Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Planta Med ; 83(10): 862-869, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28249301

ABSTRACT

Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana. Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana. The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana. The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana-derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli-derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana-derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana-derived recombinant human acidic fibroblast growth factor effectively protects skin cell from UVB, suggesting its potential use as a cosmetic or therapeutic agent against skin photoaging.


Subject(s)
Fibroblast Growth Factor 1/pharmacology , Nicotiana/genetics , Skin Aging/drug effects , Agrobacterium , Cell Line , Cell Survival/drug effects , Cloning, Molecular , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/toxicity , Genetic Vectors , Humans , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Skin/drug effects , Skin/radiation effects , Ultraviolet Rays
2.
Gene ; 327(2): 185-94, 2004 Mar 03.
Article in English | MEDLINE | ID: mdl-14980715

ABSTRACT

Calumenin is a multiple EF-hand protein located in endo/sarcoplasmic reticulum of mammalian heart and other tissues [J. Biol. Chem. 272 (1997) 18232; Genomics 49 (1998) 331; Biochim. Biophys. Acta 1386 (1998) 121]. In the present study, a new isoform of mouse calumenin (mouse calumenin 2) was cloned by RT-PCR and genomic DNA PCR. The deduced amino acid sequence of mouse calumenin 2 is 315 aa long with the calculated MW of 37,064 and pI of 4.26. It has 92% aa sequence identity to previously identified mouse calumenin [J. Biol. Chem. 272 (1997) 18232] (mouse calumenin 1). The difference in the aa sequence was restricted to the first two EF-hand regions (residues 74-138). Northern blot analysis shows that mouse calumenin 2 is highly expressed in heart, lung, testis and unpregnant uterus. The expression of mouse calumenin 2 appears to decrease when fetal development is progressed. Genomic DNA PCR, sequencing and data mining of mouse genome database were utilized to examine the exon-intron boundaries of mouse calumenin genes. Both mouse calumenin 1 and 2 genes encompass six exons, and five of them (Exon1, 3, 4, 5 and 6) are identical. However, mouse calumenin 1 contains Exon2-1, whereas mouse calumenin 2 contains a neighboring Exon2-2. The calumenin genes are localized on mouse chromosome 6 having conserved synteny with human chromosome 7q32. For comparison, the genomic organization of human calumenin was also examined using the published human genome database (UCSC Genome Bioinformatics at ). Like mouse calumenin genes, two human calumenin genes also consist of five identical exons (Exon1, 3, 4, 5 and 6) and a different Exon2. The present study suggests that the genomic organization of calumenin genes is well conserved between human and mouse.


Subject(s)
Calcium-Binding Proteins/genetics , Protein Isoforms/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Embryo, Mammalian/metabolism , Evolution, Molecular , Exons , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes/genetics , Humans , Introns , Male , Molecular Sequence Data , Muscle, Skeletal/metabolism , Myocardium/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL