Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Ethnopharmacol ; 325: 117783, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38246480

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The roots of Asarum heterotropoides F. Maekawa var. mandshuricum F. Maekawa (AR) is a traditional herbal medicine used across Asia, including Korea, China, and Japan. AR exhibits a range of biological activities, such as anti-inflammatory, anti-cancer, cold treatment, and anti-nociceptive effects. Various extraction methods, including decoction, which utilizes traditional knowledge and techniques. The AR decoction extract expected to contain fewer toxicants and have reduced toxicity due to the use of hot water in the extraction process. However, scientific evidence on the toxicity of AR decoction extracts is lacking, necessitating further studies for safe usage. AIM OF THE STUDY: This study aimed to evaluate the genotoxicity and toxicity of single and repeated administration of AR decoction extracts. MATERIALS AND METHODS: The genotoxicity was assessed using a bacterial reverse mutation (Ames test), an in vitro mammalian chromosome aberration test (CA test), and an in vivo micronucleus test (MN test) in Sprague-Dawley (SD) rats. The general toxicity was evaluated through single-dose and 13-week repeated-dose toxicity studies. In the single-dose toxicity study, 40 SD rats were orally administered AR decoction extract at doses of 1000, 2000, and 5000 mg/kg. In the 13-week repeated-dose toxicity study, 140 SD rats received daily oral doses of 0, 250, 500, 1000, 2000, and 5000 mg/kg of AR decoction extract. RESULTS: The genotoxicity tests revealed that AR decoction extract was not genotoxic. The single-dose toxicity study showed no changes in body weight, clinical pathology, or macroscopic findings, with the approximate lethal dose (ALD) exceeding 5000 mg/kg. The 13-week repeated-dose toxicity study demonstrated no treatment-related changes in body weight, general symptoms, hematology, clinical chemistry, or urinalysis. Histopathological findings revealed hyperplasia of squamous cells in the forestomach after AR decoction extract administration, a treatment-related effect that resolved during the recovery period. The no observed adverse effect level (NOAEL) for both male and female rats was estimated to be 2000 mg/kg. CONCLUSIONS: This study establishes the non-toxic dose of AR decoction extract, providing a foundation for further non-clinical and clinical evaluations AR safety.


Subject(s)
Asarum , Plant Extracts , Rats , Male , Female , Animals , Plant Extracts/toxicity , Rats, Sprague-Dawley , Anti-Inflammatory Agents/pharmacology , Body Weight , Mammals
2.
J Ethnopharmacol ; 305: 116012, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36567041

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Asarum heterotropoides var. seoulense (Nakai) Kitag is a traditional herbal medicine used in Korea and China. It is effective in aphthous stomatitis, local anesthesia, headache, toothache, gingivitis, and inflammatory diseases. However, information on the toxicity of the root of Asarum heterotropoides var. seoulense (Nakai) Kitag (AR) is limited. Therefore, preclinical toxicity studies on AR are needed to reduce the risk of excessive intake. AIM OF THE STUDY: We aimed to evaluate genotoxicity and the potential toxicity due to repeated administration of AR powder. MATERIALS AND METHODS: In vitro bacterial reverse mutation assay (Ames), in vitro chromosomal aberration assay (CA), and in vivo micronucleus (MN) assay in ICR mice were conducted. As positive results were obtained in Ames and CA assays, alkaline comet assay and pig-a gene mutation test were conducted for confirmation. For evaluating the general toxicity of AR powder, a 13-week subchronic toxicity test was conducted, after determining the dose by performing a single and a 4-week dose range finding (DRF) test. A total of 152 Sprague-Dawley (SD) rats were orally administered AR powder at doses of 0, 150, 350, 500, 1000, and 2000 mg/kg/day in the 13-week subchronic toxicity test. Hematology, clinical chemistry, urinalysis, organ weight, macro-, and microscopic examination were conducted after rat necropsy. RESULTS: AR powder induced genotoxicity evidenced in the Ames test at 187.5, 750, 375, and 1500 µg/plate of TA100, TA98, TA1537, and E. coli WP2uvrA in the presence and absence of S9, respectively; CA test at 790 µg/mL for 6 h in the presence of S-9; 75 µg/mL for 6 h in the absence of S-9, and 70 µg/mL for 22 h in the absence of S-9 in the stomach in the comet assay but not in MN and pig-a assays. In the 13-week subchronic toxicity study, clinical signs including irregular respiration, noisy respiration, salivation, and decreased body weight or food consumption were observed in males and females in the 2000 mg/kg/day group. In hematology tests, clinical chemistry, urinalysis, organ weight, and macroscopic examination, changes were observed in the dose groups of 500 mg/kg/day and above. Microscopic examination revealed hyperplasia of the stomach as a test-related change. Hepatocellular adenoma and changes in liver-related clinical chemistry parameters were observed. The rat No Observed Adverse Effect Level (NOAEL) was 150 mg/kg/day in males and <150 mg/kg/day in females. CONCLUSIONS: AR powder is potentially toxic to the liver and stomach and should be used with caution in humans. A long-term study on carcinogenicity is necessitated because DNA damage or changes in tissue lesions were observed in SD rats.


Subject(s)
Asarum , Mice , Humans , Male , Female , Rats , Animals , Rats, Sprague-Dawley , Mutagenicity Tests/methods , Escherichia coli , Powders , Mice, Inbred ICR , DNA Damage , Chromosome Aberrations/chemically induced
3.
Clin Pharmacol Drug Dev ; 11(1): 91-99, 2022 01.
Article in English | MEDLINE | ID: mdl-34159751

ABSTRACT

Hypertension is more effectively treated with coadministration of 2 or more antihypertensive drugs than with high-dose monotherapy. Therefore, calcium channel blockers, angiotensin II receptor blockers, and thiazides are coadministered to treat hypertension. The objective of this study was to compare the pharmacokinetic (PK) profiles of HCP1401, a fixed-dose combination of amlodipine 5 mg, losartan 100 mg, and chlorthalidone 25 mg, with the separate components (loose combination) of amlodipine/losartan 5/100 mg and chlorthalidone 25 mg. A randomized, open-label, single-dose, 2-way crossover study was conducted. Blood samples for amlodipine and chlorthalidone were collected for up to 144 hours after dosing, whereas those for losartan were collected up to 48 hours after dosing. The PK parameters of these drugs were calculated using a noncompartmental method. Sixty subjects completed the study. The geometric mean ratios and 90% confidence intervals of maximum plasma concentration and area under the concentration-time curve to the last measurable point for amlodipine, losartan, and chlorthalidone were within the conventional bioequivalence range of 0.80 to 1.25. There were no clinically significant changes in safety assessments, and the treatments were well tolerated. The PK characteristics and tolerability profiles of a single oral FDC of amlodipine, losartan, and chlorthalidone were equivalent to those of individual tablets in a loose combination.


Subject(s)
Chlorthalidone , Losartan , Amlodipine , Cross-Over Studies , Drug Combinations , Humans
SELECTION OF CITATIONS
SEARCH DETAIL