Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Nanobiotechnology ; 21(1): 414, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946240

ABSTRACT

Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.


Subject(s)
Mycobacterium tuberculosis , Nanotubes, Carbon , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Drug Delivery Systems , Tuberculosis/drug therapy , Nanomedicine
2.
Carbohydr Polym ; 319: 121177, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567693

ABSTRACT

The current study aimed to overcome the poor solubility and colon-specific delivery of curcumin (CUR) by formulating a curcumin nanosuspension (CUR-NS) using the antisolvent precipitation method. Freeze-dried CUR-NS was encapsulated into microbeads (CUR-NS-MB) by the ionotropic gelation method using zinc chloride (as a cross-linking agent) with the help of rate-controlling polymers, pectin, and chitosan. Furthermore, cellulose acetate phthalate (CAP) is incorporated as an enteric polymer to protect against acidic medium degradation. Particle size, surface morphology, interaction studies, and entrapment studies were performed to optimize CUR-NSs. Nanosuspensions stabilized with hydroxypropyl methylcellulose (HPMC E-15; 1 % w/v) showed an average particle size of 193.5 ± 4.31 nm and a polydispersity index (PDI) of 0.261 ± 0.020. The optimized microbeads (CUR-NS-MB) showed 89.45 ± 3.11 % entrapment efficiency with a drug loading of 14.54 ± 1.02 %. The optimized formulation (CUR-NS-MB) showed colon-specific in vitro drug release bypassing acid pH degradation. In animal studies, a 2.5-fold increase in Cmax and a 4.4-fold increase in AUC048h were observed with CUR-NS-MB, which was more significant than that of plain CUR. Therefore, the developed CUR-NS-MB has the potential to be used as a colon-specific delivery system.


Subject(s)
Chitosan , Curcumin , Nanoparticles , Animals , Curcumin/pharmacology , Biological Availability , Microspheres , Pectins , Particle Size , Solubility , Polymers , Drug Carriers
3.
Front Bioeng Biotechnol ; 11: 1159193, 2023.
Article in English | MEDLINE | ID: mdl-37200842

ABSTRACT

Nanotechnology is an emerging applied science delivering crucial human interventions. Biogenic nanoparticles produced from natural sources have received attraction in recent times due to their positive attributes in both health and the environment. It is possible to produce nanoparticles using various microorganisms, plants, and marine sources. The bioreduction mechanism is generally employed for intra/extracellular synthesis of biogenic nanoparticles. Various biogenic sources have tremendous bioreduction potential, and capping agents impart stability. The obtained nanoparticles are typically characterized by conventional physical and chemical analysis techniques. Various process parameters, such as sources, ions, and temperature incubation periods, affect the production process. Unit operations such as filtration, purification, and drying play a role in the scale-up setup. Biogenic nanoparticles have extensive biomedical and healthcare applications. In this review, we summarized various sources, synthetic processes, and biomedical applications of metal nanoparticles produced by biogenic synthesis. We highlighted some of the patented inventions and their applications. The applications range from drug delivery to biosensing in various therapeutics and diagnostics. Although biogenic nanoparticles appear to be superior to their counterparts, the molecular mechanism degradation pathways, kinetics, and biodistribution are often missing in the published literature, and scientists should focus more on these aspects to move them from the bench side to clinics.

4.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769419

ABSTRACT

Among the various types of nanoparticles and their strategy for synthesis, the green synthesis of silver nanoparticles has gained much attention in the biomedical, cellular imaging, cosmetics, drug delivery, food, and agrochemical industries due to their unique physicochemical and biological properties. The green synthesis strategies incorporate the use of plant extracts, living organisms, or biomolecules as bioreducing and biocapping agents, also known as bionanofactories for the synthesis of nanoparticles. The use of green chemistry is ecofriendly, biocompatible, nontoxic, and cost-effective. We shed light on the recent advances in green synthesis and physicochemical properties of green silver nanoparticles by considering the outcomes from recent studies applying SEM, TEM, AFM, UV/Vis spectrophotometry, FTIR, and XRD techniques. Furthermore, we cover the antibacterial, antifungal, and antiparasitic activities of silver nanoparticles.


Subject(s)
Anti-Infective Agents/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry , Animals , Anti-Infective Agents/administration & dosage , Green Chemistry Technology/methods , Humans , Metal Nanoparticles/administration & dosage , Plant Extracts/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL