Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sleep Med ; 103: 100-105, 2023 03.
Article in English | MEDLINE | ID: mdl-36774743

ABSTRACT

BACKGROUND: Management of narcolepsy includes behavior strategies and symptomatic pharmacological treatment. In the general population, complementary and alternative medicine (CAM) use is common in Europe (30%), also in chronic neurological disorders (10-20%). The aim of our study was to evaluate frequency and characteristics of CAM use in German narcolepsy patients. METHODS: Demographic, disease-related data frequency and impact of CAM use were assessed in an online survey. Commonly used CAM treatments were predetermined in a questionnaire based on the National Center for Complementary and Alternative Medicine and included the domains: (1) alternative medical systems; (2) biologically based therapies; (3) energy therapies; (4) mind-body interventions, and (5) manipulative and body-based therapies. RESULTS: We analyzed data from 254 questionnaires. Fifteen percent of participants were at the time of survey administration using CAM for narcolepsy, and an additional 18% of participants reported past use. Among the 33% of CAM users, vitamins/trace elements (54%), homoeopathy (48%) and meditation (39%) were used most frequently. 54% of the users described CAM as helpful. CAM users more frequently described having side effects from their previous medication (p = 0.001), and stated more frequently not to comply with pharmacological treatment than non-CAM users (21% vs. 8%; p = 0.024). DISCUSSION: The use of CAM in narcolepsy patients is common. Our results indicate that many patients still feel the need to improve their symptoms, sleepiness and psychological well-being in particular. Frequent medication change, the experience of adverse events and low adherence to physician-recommended medication appears more frequent in CAM users. The impact of CAM however seems to be limited.


Subject(s)
Complementary Therapies , Meditation , Narcolepsy , Humans , Surveys and Questionnaires , Narcolepsy/drug therapy , Emotions
2.
Neurol Res Pract ; 3(1): 15, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33691803

ABSTRACT

Insomnia is defined as difficulties of initiating and maintaining sleep, early awakening and poor subjective sleep quality despite adequate opportunity and circumstances for sleep with impairment of daytime performance. These components of insomnia - namely persistent sleep difficulties despite of adequate sleep opportunity resulting in daytime dysfunction - appear secondary or co-morbid to neurological diseases. Comorbid insomnia originates from neurodegenerative, inflammatory, traumatic or ischemic changes in sleep regulating brainstem and hypothalamic nuclei with consecutive changes of neurotransmitters. Symptoms of neurological disorders (i.e motor deficits), co-morbidities (i.e. pain, depression, anxiety) and some disease-specific pharmaceuticals may cause insomnia and/or other sleep problems.This guideline focuses on insomnias in headaches, neurodegenerative movement disorders, multiple sclerosis, traumatic brain injury, epilepsies, stroke, neuromuscular disease and dementia.The most important new recommendations are: Cognitive behavioral therapy (CBTi) is recommended to treat acute and chronic insomnia in headache patients. Insomnia is one of the most frequent sleep complaints in neurodegenerative movement disorders. Patients may benefit from CBTi, antidepressants (trazodone, doxepin), melatonin and gaba-agonists. Insomnia is a frequent precursor of MS symptoms by up to 10 years. CBTi is recommended in patients with MS, traumatic brain injury and. Melatonin may improve insomnia symptoms in children with epilepsies. Patients with insomnia after stroke can be treated with benzodiazepine receptor agonists and sedating antidepressants. For patients with dementia suffering from insomnia trazodone, light therapy and physical exercise are recommended.

3.
Nat Rev Neurol ; 15(9): 519-539, 2019 09.
Article in English | MEDLINE | ID: mdl-31324898

ABSTRACT

Narcolepsy is a rare brain disorder that reflects a selective loss or dysfunction of orexin (also known as hypocretin) neurons of the lateral hypothalamus. Narcolepsy type 1 (NT1) is characterized by excessive daytime sleepiness and cataplexy, accompanied by sleep-wake symptoms, such as hallucinations, sleep paralysis and disturbed sleep. Diagnosis is based on these clinical features and supported by biomarkers: evidence of rapid eye movement sleep periods soon after sleep onset; cerebrospinal fluid orexin deficiency; and positivity for HLA-DQB1*06:02. Symptomatic treatment with stimulant and anticataplectic drugs is usually efficacious. This Review focuses on our current understanding of how genetic, environmental and immune-related factors contribute to a prominent (but not isolated) orexin signalling deficiency in patients with NT1. Data supporting the view of NT1 as a hypothalamic disorder affecting not only sleep-wake but also motor, psychiatric, emotional, cognitive, metabolic and autonomic functions are presented, along with uncertainties concerning the 'narcoleptic borderland', including narcolepsy type 2 (NT2). The limitations of current diagnostic criteria for narcolepsy are discussed, and a possible new classification system incorporating the borderland conditions is presented. Finally, advances and obstacles in the symptomatic and causal treatment of narcolepsy are reviewed.


Subject(s)
Brain/physiopathology , Narcolepsy , Orexins/physiology , Humans , Hypothalamus/physiopathology , Narcolepsy/diagnosis , Narcolepsy/etiology , Narcolepsy/physiopathology , Narcolepsy/therapy
4.
Neurosci Lett ; 562: 75-8, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24412677

ABSTRACT

Methylenetetrahydrofolate reductase (MTHFR) is necessary for the synthesis of methionine and S-adenosylmethionine, which is necessary for CNS (re-)myelination. The MTHFR variant c.1298A>C was associated with the development of relapsing remitting multiple sclerosis (RRMS) in a German population. This study aimed at analyzing whether further genetic variants of methionine metabolism are associated with the development or the clinical course of RRMS. Therefore, genomic DNA of 147 serial German RRMS patients and 147 matched healthy controls was genotyped for five polymorphic variants of methionine metabolism. Statistical analyses were performed using multivariate binary and linear regression analyses. We show that the insertion allele of cystathionine beta-synthase (CBS) c.844_855ins68bp and the G-allele of reduced folate carrier 1 (RFC1) c.80G>A were associated with an earlier age of onset of MS, suggesting gene-dose effects (median age of onset in years: 25-26-32; standardized regression coefficient beta: 0.216; p=0.030, and 29-31-35 years; beta: 0.282; p=0.005, respectively). Conclusively, mutant variants of CBS and RFC1 may be associated with the age of RRMS onset. Since methionine metabolism can be manipulated by supplementation of vitamins and amino acids, our data provide a rationale for novel ideas of preventive and therapeutic strategies in RRMS.


Subject(s)
Genetic Predisposition to Disease , Homocysteine/metabolism , Methionine/metabolism , Multiple Sclerosis/genetics , Polymorphism, Genetic , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Adult , Case-Control Studies , Cystathionine beta-Synthase/genetics , Female , Genetic Testing , Genotype , Humans , Male , Methionine/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Multiple Sclerosis/metabolism , S-Adenosylmethionine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL