Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 13: 995881, 2022.
Article in English | MEDLINE | ID: mdl-36353486

ABSTRACT

Parkia biglobosa (Jacq.) R. Br. (Fabaceae) is a widely distributed tree, used in traditional medicine to treat amebiasis, hookworm infection, ascariasis, asthma, sterility, dental pain, headaches, cardiac disorders, and epilepsy. To date, no study on the effect of an aqueous extract of P. biglobosa on epileptogenesis and associated neuropsychiatric disorders has been undertaken. Therefore, this study aimed to investigate antiepileptogenic-, antiamnesic-, and anxiolytic-like effects of an aqueous extract of P. biglobosa using pentylenetetrazole (PTZ)-induced kindling in mice. Animals were divided into six groups of eight mice each. Thus, a PTZ group received distilled water (10 ml/kg, per os), a positive control group received sodium valproate (300 mg/kg, p.o.), and three test groups received the aqueous extract of P. biglobosa (80, 160, and 320 mg/kg, p.o.).In addition, a control group of eight mice receiving distilled water (10 ml/kg, p.o.) was formed. The treatments were administered to mice, 60 min before administration of PTZ (20 mg/kg, i.p.). These co-administrations were performed once daily, for 22 days. The number and duration of seizures (stages 1, 2, 3, and 4 of seizures) exhibited by each mouse were assessed for 30 min during the treatment period. Twenty-four hours following the last administration of the treatments and PTZ, novel object recognition and T-maze tests were performed to assess working memory impairment in mice, while the open field test was performed to assess anxiety-like behavior. After these tests, the animals were sacrificed, and the hippocampi were collected for biochemical and histological analysis. During the period of PTZ-kindling, the extract at all doses completely (p < 0.001) protected all mice against stages 3 and 4 of seizures when compared to sodium valproate, a standard antiepileptic drug. The extract also significantly (p < 0.001) attenuated working memory impairment and anxiety-like behavior. In post-mortem brain analyses, the extract significantly (p < 0.001) increased γ-aminobutyric acid (GABA) level and reduced oxidative stress and inflammation. Histological analysis showed that the aqueous extract attenuated neuronal degeneration/necrosis in the hippocampus. These results suggest that the extract is endowed with antiepileptogenic-, anti-amnesic-, and anxiolytic-like effects. These effects seem to be mediated in part by GABAergic, antioxidant, and anti-inflammatory mechanisms. These results suggest the merit of further studies to isolate the bioactive molecules responsible for these potentially therapeutically relevant effects of the extract.

2.
Metab Brain Dis ; 37(7): 2581-2602, 2022 10.
Article in English | MEDLINE | ID: mdl-35916986

ABSTRACT

Temporal lobe epilepsy is the most common drug-resistant epilepsy. To cure epilepsy, drugs must target the mechanisms at the origin of seizures. Thus, the present investigation aimed to evaluate the antiepileptic- and anti-amnesic-like effects of an aqueous extract of Syzygium cumini against kainate-induced status epilepticus in mice, and possible mechanisms of action. Mice were divided into 7 groups and treated as follows: normal group or kainate group received po distilled water (10 mL/kg), four test groups received Syzygium cumini (28.8, 72, 144, and 288 mg/kg, po), and the positive control group treated intraperitoneally (ip) with sodium valproate (300 mg/kg). An extra group of normal mice was treated with piracetam (200 mg/kg, po). Treatments were administered 60 min before the induction of status epilepticus with kainate (15 mg/kg, ip), and continued daily throughout behavioral testing. Twenty-four hours after the induction, T-maze and Morris water maze tasks were successively performed. The animals were then sacrificed and some markers of oxidative stress and neuroinflammation were estimated in the hippocampus. The extract significantly prevented status epilepticus and mortality. In the T-maze, the aqueous extract markedly increased the time spent and the number of entries in the discriminated arm. In the Morris water maze, the extract significantly increased the time spent in the target quadrant during the retention phase. Furthermore, the aqueous extract induced a significant reduction of oxidative stress and neuroinflammation. These results suggest that the aqueous extract of Syzygium cumini has antiepileptic- and anti-amnesic-like effects, likely mediated in part by antioxidant and anti-inflammatory activities.


Subject(s)
Piracetam , Status Epilepticus , Syzygium , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Kainic Acid/toxicity , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Valproic Acid , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Amnesia/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy
3.
Metab Brain Dis ; 37(8): 2995-3009, 2022 12.
Article in English | MEDLINE | ID: mdl-35922734

ABSTRACT

Pharmacological treatments against Alzheimer disease provide only symptomatic relief and are associated with numerous side effects. Previous studies showed that a concoction of Ziziphus jujuba leaves possesses anti-amnesic effects in scopolamine-treated rats. More recently, an aqueous macerate of Z. jujuba leaves has been shown to reduce short-term memory impairment in D-galactose-treated rats. However, no study on the effect of an aqueous macerate of Z. jujuba on long-term memory impairment was performed. Therefore, this study evaluates the effect of an aqueous macerate of Z. jujuba on long-term spatial memory impairment in D-galactose-treated rats. Long-term spatial memory impairment was induced in rats by administering D-galactose (350 mg/kg/day, s.c.), once dailyfor 21 days. On the 22nd day, the integrity of this memory was assessed using the Morris water maze task. Rats that developed memory impairment were treated with tacrine (10 mg/kg, p.o.), or aspirin (20 mg/kg, p.o.), or extract (41.5, 83, and 166 mg/kg, p.o.), once daily, for 14 days. At the end of the treatment, memory impairment was once more assessed using the same paradigm. Animals were then euthanized, and some pro-inflammatory cytokine markers were analyzed in the hippocampus or blood. The extract at all doses significantly reduced the latency to attain the platforming of the water maze test. The extract (83 mg/kg) also increased the time spent in the target quadrant during the retention phase. The extract markedly reduced the concentration of pro-inflammatory cytokine markers in the hippocampus and blood. Together, these results suggest that this aqueous extract Z. jujuba reduces long-term spatial memory impairment. This effect may be mediated in part by its anti-inflammatory activity.


Subject(s)
Ziziphus , Rats , Animals , Galactose/toxicity , Spatial Memory , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Amnesia/drug therapy , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines , Maze Learning
4.
Heliyon ; 8(5): e09549, 2022 May.
Article in English | MEDLINE | ID: mdl-35663738

ABSTRACT

Ethnopharmacological relevance: Temporal lobe epilepsy is the most common form of drug-resistant epilepsy. Therefore, medicinal plants provide an alternative source for the discovery of new antiepileptic drugs. Aim of the study: This study was aimed at investigating the antiepileptic- and anxiolytic-like effects of an aqueous extract of Khaya senegalensis (K. senegalensis) in kainate-treated rats. Methods: Seventy-two rats received a single dose of kainate (12 mg/kg) intraperitoneally. Those that exhibited two hours of status epilepticus were selected and monitored for the first spontaneous seizure. Then, animals that developed seizures were divided into 6 groups of 8 rats each and treated twice daily for 14 days as follows: negative control group received per os (p.o.) distilled water (10 ml/kg); two positive control groups received either sodium valproate (300 mg/kg, p.o.) or phenobarbital (20 mg/kg, p.o.); and three test groups received different doses of the extract (50, 100, and 200 mg/kg, p.o.). In addition, a group of 8 normal rats (normal control group) received distilled water (10 ml/kg, p.o.). During the treatment period, the animals were video-monitored 12 h/day for behavioral seizures. At the end of the treatment period, animals were subjected to elevated plus-maze and open field tests. Thereafter, rats were euthanized for the analysis of γ-aminobutyric acid (GABA) concentration, oxidative stress status, and neuronal loss in the hippocampus. Results: The aqueous extract of K. senegalensis significantly reduced spontaneous recurrent seizures (generalized tonic-clonic seizures) and anxiety-like behavior compared to the negative control group. These effects were more marked than those of sodium valproate or phenobarbital. Furthermore, the extract significantly increased GABA concentration, alleviated oxidative stress, and mitigated neuronal loss in the dentate gyrus of the hippocampus. Conclusion: These findings suggest that the aqueous extract of K. senegalensis possesses antiepileptic- and anxiolytic-like effects. These effects were greater than those of sodium valproate or phenobarbital, standard antiepileptic drugs. Furthermore, these effects are accompanied by neuromodulatory and antioxidant activities that may be related to their behavioral effects. These data justify further studies to identify the bioactive molecules present in the extract for possible future therapeutic development and to unravel their mechanisms of action.

5.
Epilepsy Behav ; 129: 108611, 2022 04.
Article in English | MEDLINE | ID: mdl-35193072

ABSTRACT

BACKGROUND: Epilepsy is a neurological disorder characterized by spontaneous recurrent seizures. Lantana camara (Verbenaceae) is a plant used in Cameroonian traditional medicine to treat dementia, epilepsy, and sleeping disorders. Hence, this study aimed to assess the antiepileptic-like effects of an aqueous extract of L. camara leaves on seizures induced by kainate in mice, and possible mechanisms of action. METHODS: Mice were divided into two groups: a normal control group treated with 0.9% saline (10 ml/kg, i.p.), and a kainate group treated with kainate (10 mg/kg, i.p.). All mice that developed status epilepticus were individually observed for spontaneous seizures. Eighteen days after the induction of status epilepticus, mice that exhibited spontaneous seizures were further divided into 6 groups of 7 mice each and treated as follows: a kainate group treated with 0.9% saline (10 ml/kg, p.o.), two positive control groups either treated with sodium valproate (300 mg/kg, p.o.) or with piracetam (200 mg/kg, p.o.), and three test groups received the extract (230, 460, and 917 mg/kg, p.o.). The control group was treated with 0.9% saline (10 ml/kg, p.o.). These treatments lasted 14 days and the animals were observed 6 h per day for behavioral seizures. Subsequently, the animals were evaluated for anxiety disorders and memory impairment. Animals were then sacrificed and the hippocampus or prefrontal cortex was collected for histological and biochemical analyses. Furthermore, the dilacerates of the hippocampi were stored for white blood cell count. RESULTS: The aqueous extract of L. camara (460 mg/kg) remarkably decreased (p < 0.001) the number and duration of seizures compared to sodium valproate. Also, it significantly increased the level of GABA both in the hippocampus and prefrontal cortex and protected these organs from oxidative stress. Furthermore, the extract (230 mg/kg) induced the highest reduction in the number of white blood cells in the hippocampus. Finally, the extract (917 mg/kg) significantly attenuated neuronal loss in the CA1, CA2, and CA3 regions of the hippocampus. All these compared to the negative control. CONCLUSION: These results suggest that the aqueous extract of L. camara has an antiepileptic-like effect comparable to that of sodium valproate. This, therefore, warrants further investigation into the effect of bioactive molecules present in the extract using in vitro and in vivo models of epilepsy.


Subject(s)
Lantana , Animals , Anxiety , Anxiety Disorders , Humans , Kainic Acid/toxicity , Lantana/chemistry , Mice , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , gamma-Aminobutyric Acid
6.
Biomed Pharmacother ; 142: 111973, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34343898

ABSTRACT

About 30% of epileptic patients continue to have seizures. The present study investigates the anticonvulsant and sedative effects of an aqueous extract of C. schweinfurthii in mice. Anticonvulsant effects of C. schweinfurthii aqueous extract (0.01-300 mg/kg, p.o.) were tested against 4-aminopyridine (4-AP, 15 mg/kg, i.p.) -, pilocarpine (PILO, 380 mg/kg, i.p.) - and pentylenetetrazole (PTZ, 75 mg/kg, i.p.) -induced seizures, while sedative effects were tested on diazepam (35 mg/kg, i.p.)-induced sleep. Afterward, the most effective dose of the extract (11.9 mg/kg) was antagonized with N-methyl-ß-carboline-3-carboxamide or flumazenil. In another set of experiments, mice were sacrificed for the estimation of GABA content and GABA-T activity in the cerebral cortex. The dose of the extract that protected 50% of mice (ED50) against 4-AP, PILO, and PTZ was respectively 4.43 mg/kg (versus 12.01 for phenobarbital), 9.59 mg/kg (vs 8.67 for diazepam), and 2.12 mg/kg (vs 0.20 for clonazepam). Further, the ED50 of the extract that increased the duration of sleep was 0.24 mg/kg (vs 0.84 for phenobarbital). N-methyl-ß-carboline-3-carboxamide or flumazenil antagonized (p < 0.001) the anticonvulsant effect of C. schweinfurthii in PTZ-induced seizures and diazepam-induced sleep when compared to the negative control group. The extract at all doses increased (p < 0.001) the GABA content and decreased (p < 0.001) GABA-T activity. These findings suggest that C. schweinfurthii possesses anticonvulsant and sedative effects. These effects seem to be mediated via the modulation of the GABA neurotransmission. These data explain the use of this plant to treat epilepsy in Cameroon traditional medicine.


Subject(s)
Anticonvulsants/pharmacology , Burseraceae/chemistry , Hypnotics and Sedatives/pharmacology , Plant Extracts/pharmacology , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/isolation & purification , Cameroon , Diazepam/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Epilepsy/drug therapy , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/isolation & purification , Male , Medicine, African Traditional , Mice , Phenobarbital/pharmacology , Plant Extracts/administration & dosage , Seizures/drug therapy , Sleep/drug effects , gamma-Aminobutyric Acid/metabolism
7.
Article in English | MEDLINE | ID: mdl-33293987

ABSTRACT

Bridelia atroviridis Müll. Arg. (B. atroviridis) is a plant used in Cameroonian traditional medicine to manage diabetes. The effects of hydroethanolic barks extract from B. atroviridis were evaluated on diabetes disorders including hematology, inflammatory, and oxidative stress parameters. The in vitro antioxidant capacity of the hydroethanolic bark extract (70 : 30) was evaluated. Nicotinamide-/streptozotocin-induced diabetic rats were daily treated with the B. atroviridis extract for fifteen days. Glycemia were evaluated every 5 days, insulin sensibility test was performed, and haematological, inflammatory, and oxidative stress parameters were analysed. Histomorphometry of the pancreas was realized. The extract was able to scavenge free radicals in vitro and decrease significantly the blood glucose levels. The treatment resulted in a significant alleviation of insulin resistance, anemia, leukocytopenia, and thrombocytopenia observed in untreated diabetic rats. The extract significantly decreased proinflammatory cytokines TNF-α, IL-1ß, and IL-10. The rate of reduced glutathione was increased in the pancreas, whereas the catalase activity and nitrite concentration were decreased. Diabetic control showed a reduced size of Langerhans islet, whereas the size of islets was large in treated groups. The hydroethanolic extract of B. atroviridis was able to improve glycemia and alleviate haematological and inflammatory parameters disorders observed in diabetic conditions, probably due to its antidiabetic, anti-inflammatory, and antioxidant capacities.

8.
Afr J Tradit Complement Altern Med ; 8(5 Suppl): 181-90, 2011.
Article in English | MEDLINE | ID: mdl-22754073

ABSTRACT

Millettia thonningii, Ocinum sanctum and Securitaca longepedunculaca are used in traditional medicine in Cameroon to treat epilepsy, insomnia and headaches. Animal models of epilepsy (maximal electroshock (MES), n-methyl-d-aspartate (NMDA), pentylenetetrazol (PTZ), isonicotinic hydrazide acid (INH), picrotoxine (PIC) and strychnine (STR)-induced convulsions or turning behavior were used to evaluate anticonvulsant activity while diazepam-induced sleep test was used to evaluate sedative activity of the plants. Four doses of extracts were used for each plant (100, 200, 500 and 1000 mg/kg). At a dose of 1000 mg/kg, Millettia thonningii protected 60 and 90% of mice against MES and PTZ-induced convulsions, respectively. At the same dose, Millettia thonningii also protected 80% of mice against NMDA-induced turning behavior. At a dose of 1000 mg/kg, Ocinum sanctum provided complete protection against MES, PIC and STR- induced convulsions and 83.3% of protection in PTZ test. Securitaca longepedunculata completely protected (100%) mice in PIC test at a dose of 200 mg/kg, in MES test at a dose of 500 mg/kg and in PTZ test at a dose of 1000 mg/kg. 66.7% of mice were protected against STR-induced convulsions. All the three plants showed also sedative properties for they increased significantly and in a dose dependent manner the total sleep time induced by diazepam. The total sleep time of the control groups was multiplied by a factor of 3 at least by each extract. The presence of sedative and anticonvulsant activity in the three plants could explain their use in traditional medicine in the treatment of epilepsy and insomnia in Cameroon.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy/drug therapy , Hypnotics and Sedatives/pharmacology , Millettia/chemistry , Polygalaceae/chemistry , Seizures/drug therapy , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep/drug effects , Administration, Oral , Analysis of Variance , Animals , Anticonvulsants/therapeutic use , Cameroon , Diazepam/administration & dosage , Dose-Response Relationship, Drug , Electroshock , Epilepsy/chemically induced , Hypnotics and Sedatives/therapeutic use , Male , Medicine, Traditional , Mice , Plants, Medicinal/chemistry , Seizures/chemically induced , Sleep Initiation and Maintenance Disorders/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL