Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Ethnopharmacol ; 328: 118101, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38527575

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: This research substantiates the traditional use of Glycyrrhiza uralensis Fisch. for liver health, with scientific evidence of the non-toxic and lipid-lowering properties of licorice sprout extracts. The sprouts' rich mineral and amino acid content, along with their strong antioxidant activity, reinforce their value in traditional medicine. These findings bridge ancient herbal practices with modern science, highlighting licorice's potential in contemporary therapeutic applications. AIM OF THE STUDY: The study aimed to investigate the dietary and medicinal potential of G. uralensis sprouts by assessing their safety, nutritional content, and antioxidant properties using both plant and animal models. Specifically, the study sought to determine the effects of different sizes of licorice sprouts on lipid metabolism in human liver cancer cells and their overall impact on rat health indicators. MATERIALS AND METHODS: The study examined the effects of aqueous and organic extracts from G. uralensis sprouts of varying lengths on the cytotoxicity, lipid metabolism, and antioxidant activity in HepG2 cells, alongside in vivo impacts on Sprague-Dawley rats, using MTT, ICP, and HPLC. It aimed to assess the potential health benefits of licorice sprouts by analyzing their protective effects against oxidative stress and their nutritional content. RESULTS: Licorice sprout extracts from G. uralensis demonstrated no cytotoxicity in HepG2 cells, significantly reduced lipid levels, and enhanced antioxidant activities, with the longest sprouts (7 cm) showing higher mineral, sugar, and arginine content as well as increased glycyrrhizin and liquiritigenin. In vivo studies with Sprague-Dawley rats revealed weight gain and improved antioxidant enzyme activities in blood plasma and liver tissues after consuming the extracts, highlighting the sprouts' dietary and therapeutic potential. CONCLUSIONS: This study is the first to demonstrate that G. uralensis sprouts, particularly those 7 cm in length, have no cytotoxic effects, reduce lipids, and have high mineral and antioxidant contents, offering promising dietary and therapeutic benefits.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza , Rats , Humans , Animals , Glycyrrhiza uralensis/chemistry , Glycyrrhiza/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Rats, Sprague-Dawley , Plant Roots/chemistry , Plant Extracts/chemistry , Minerals/analysis , Lipids
2.
PLoS One ; 17(10): e0273908, 2022.
Article in English | MEDLINE | ID: mdl-36240136

ABSTRACT

Endophytic fungi from the Chilli were used to help okra plants exposed to cadmium (Cd) or chromium (Cr) stress. Initially, the strain Ch06 produced higher amounts of indole acetic acid (IAA) (230.5 µg/mL), sugar (130.7 µg/mL), proteins (128.2 µg/mL), phenolics (525.6 µg/mL) and flavonoids (98.4 µg/mL) in Czapek broth supplemented with Cd or Cr. The production of IAA and other metabolites in such a higher concentration suggested that Ch06 might improve plant growth under heavy metal stress. For this reason, an experiment was designed, in which biomass of Ch06 (at 2g/100g of sand) were applied to the okra plants exposed to Cd or Cr stress (at 100 or 500 µg/g). The results exhibited that Ch06 improved the total chlorophyll (36.4±0.2 SPAD), shoot length (22.6±0.2 cm), root length (9.1±0.6 cm), fresh weight (5±0.6 g), dry weight (1.25±0.01 g), sugars (151.6 µg/g), proteins (114.8 µg/g), proline (6.7 µg/g), flavonoids (37.9 µg/g), phenolics (70.7 µg/g), IAA (106.7 µg/g), catalase (0.75 enzyme units/g tissue) and ascorbic acid oxidaze (2.2 enzyme units/g tissue) of the associated okra plants. Similar observations have been recorded in Ch06 associated okra plants under Cd and Cr stress. Also, Ch06 association reduced translocation of Cd (35% and 45%) and Cr (47% and 53%) to the upper parts of the okra plants and thus reduced their toxicity. The internal transcribed spacer (ITS) region amplification of 18S rDNA (ribosomal deoxyribo nucleic acid) exhibited that the potent strain Ch06 was Aspergillus violaceofuscus. The results implied that A. violaceofuscus has the ability to promote host species growth exposed to Cd and Cr. Moreover, it helped the host plants to recover in Cd and Cr polluted soils, hence can be used as biofertilizer.


Subject(s)
Abelmoschus , Metals, Heavy , Nucleic Acids , Soil Pollutants , Abelmoschus/metabolism , Ascorbic Acid , Aspergillus , Biodegradation, Environmental , Cadmium/metabolism , Cadmium/toxicity , Catalase , Chlorophyll , Chromium/toxicity , DNA, Ribosomal , Flavonoids , Proline/metabolism , Sand , Soil Pollutants/analysis , Sugars
3.
Front Plant Sci ; 12: 665590, 2021.
Article in English | MEDLINE | ID: mdl-34177981

ABSTRACT

Salinity has drastically reduced crop yields and harmed the global agricultural industry. We isolated 55 bacterial strains from plants inhabiting the coastal sand dunes of Pohang, Korea. A screening bioassay showed that 14 of the bacterial isolates secreted indole-3-acetic acid (IAA), 12 isolates were capable of exopolysaccharide (EPS) production and phosphate solubilization, and 10 isolates secreted siderophores. Based on our preliminary screening, 11 bacterial isolates were tested for salinity tolerance on Luria-Bertani (LB) media supplemented with 0, 50, 100, and 150 mM of NaCl. Three bacterial isolates, ALT11, ALT12, and ALT30, had the best tolerance against elevated NaCl levels and were selected for further study. Inoculation of the selected bacterial isolates significantly enhanced rice growth attributes, viz., shoot length (22.8-42.2%), root length (28.18-59%), fresh biomass (44.7-66.41%), dry biomass (85-90%), chlorophyll content (18.30-36.15%), Chl a (29.02-60.87%), Chl b (30.86-64.51%), and carotenoid content (26.86-70%), under elevated salt stress of 70 and 140 mM. Furthermore, a decrease in the endogenous abscisic acid (ABA) content (27.9-23%) and endogenous salicylic acid (SA) levels (11.70-69.19%) was observed in inoculated plants. Antioxidant analysis revealed an increase in total protein (TP) levels (42.57-68.26%), whereas it revealed a decrease in polyphenol peroxidase (PPO) (24.63-34.57%), glutathione (GSH) (25.53-24.91%), SOA (13.88-18.67%), and LPO levels (15.96-26.06%) of bacterial-inoculated plants. Moreover, an increase in catalase (CAT) (26-33.04%), peroxidase (POD) (59.55-78%), superoxide dismutase (SOD) (13.58-27.77%), and ascorbic peroxidase (APX) (5.76-22.74%) activity was observed. Additionally, inductively coupled plasma mass spectrometry (ICP-MS) analysis showed a decline in Na+ content (24.11 and 30.60%) and an increase in K+ (23.14 and 15.45%) and Mg+ (2.82 and 18.74%) under elevated salt stress. OsNHX1 gene expression was downregulated (0.3 and 4.1-folds), whereas the gene expression of OsPIN1A, OsCATA, and OsAPX1 was upregulated by a 7-17-fold in bacterial-inoculated rice plants. It was concluded that the selected bacterial isolates, ALT11, ALT12, and ALT30, mitigated the adverse effects of salt stress on rice growth and can be used as climate smart agricultural tools in ecofriendly agricultural practices.

4.
Front Plant Sci ; 12: 593717, 2021.
Article in English | MEDLINE | ID: mdl-33868325

ABSTRACT

Melatonin has been recently known to stimulate plant growth and induce protective responses against different abiotic stresses. However, the mechanisms behind exogenous melatonin pretreatment and restoration of plant vigor from salinity stress remain poorly understood. The present study aimed to understand the effects of exogenous melatonin pretreatment on salinity-damaged green mustard (Brassica juncea L. Czern.) seedlings in terms of oxidative stress regulation and endogenous phytohormone production. Screening of several melatonin concentrations (0, 0.1, 1, 5, and 10 µM) on mustard growth showed that the 1 µM concentration revealed an ameliorative increase of plant height, leaf length, and leaf width. The second study aimed at determining how melatonin application can recover salinity-damaged plants and studying its effects on physiological and biochemical parameters. Under controlled environmental conditions, mustard seedlings were irrigated with distilled water or 150 mM of NaCl for 7 days. This was followed by 1 µM of melatonin application to determine its recovery impact on the damaged plants. Furthermore, several physiological and biochemical parameters were examined in stressed and unstressed seedlings with or without melatonin application. Our results showed that plant height, leaf length/width, and stem diameter were enhanced in 38-day-old salinity-stressed plants under melatonin treatment. Melatonin application obviously attenuated salinity-induced reduction in gas exchange parameters, relative water content, and amino acid and protein levels, as well as antioxidant enzymes, such as superoxide dismutase and catalase. H2O2 accumulation in salinity-damaged plants was reduced by melatonin treatment. A decline in abscisic acid content and an increase in salicylic acid content were observed in salinity-damaged seedlings supplemented with melatonin. Additionally, chlorophyll content decreased during the recovery period in salinity-damaged plants by melatonin treatment. This study highlighted, for the first time, the recovery impact of melatonin on salinity-damaged green mustard seedlings. It demonstrated that exogenous melatonin supplementation significantly improved the physiologic and biochemical parameters in salinity-damaged green mustard seedlings.

5.
Plant Dis ; 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33822663

ABSTRACT

The Chinese quince (Pseudocydonia sinensis (Thouin) CK Schneid.) is a tree that is commonly distributed in all regions of South Korea and other Asian countries. The ripened yellow fruit contains medically active compounds (Hamauzu et al. 2005). It has been consumed as tea and candies and used in traditional medicine for treating asthma, cough, influenza, harsh throat, and tuberculosis and for liver protection (Chun et al. 2012). In the Kyungpook National University campus (Daegu, South Korea), fruit canker on the Chinese quince was ubiquitously observed during May-August 2020. The average disease incidence was around 30%-40%, which caused significant yield loss. Initially, minute, brown-to-rust-colored, unbroken, circular, necrotic areas appear, and in the advanced stage of infection, the epidermis tears open and tube- or aecia-like white structures are formed. Successively, the affected areas become necrotic and gradually enlarge to reach 3-5 cm in diameter. To isolate the causative pathogen, symptomatic tissues obtained from diseased fruits were surface-sterilized for 1 min with 70% ethanol, rinsed in sterile distilled water, and plated onto potato dextrose agar (PDA). The inoculated plates were incubated for 7 days at 25°C. Successively, pure cultures were obtained by transferring hyphal tips to new PDA plates. A total of 15 isolates were obtained across 20 fruit trees investigated. The colonies on the PDA plates reached a diameter of 60-70 mm after 7 days at 25°C, spreading with a regular margin, aerial mycelium covering the entire colony, compact, white to pale gray in color, and solitary and globose pycnidia were produced after ten days. Conidiogenous cells were phialidic, hyaline, simple, smooth, doliiform to ampulliform, 3-5 × 3-4 µm; conidia were subglobose to oval or obtuse, thin-walled, smooth, aseptate, minute guttules, brown, 5.5-8 × 4-7 µm. These morphologies corresponded to those of phoma-like species. Sequence data for the 28S nrDNA, the internal transcribed spacer, ß-tubulin, and RNA polymerase II subunit (White et al. 1990, Liu et al. 1999, Aveskamp et al. 2009) were obtained randomly for one of the pure isolates (EAH 2), which resulted in the GenBank accession numbers MW325675, MW325676, MW330391, and MW330390, respectively. The RAxML analysis (Stamatakis 2014) was run on the CIPRES Science Gateway portal of the combined sequence data of the isolate EAH 2 and the reference sequences obtained from GenBank. Analyses for the combined datasets were conducted with RAxML-HPC2 on XSEDE v. 8.2.10 using a GTR+GAMMA substitution model with 1000 bootstrap iterations. Results demonstrated that the isolate EAH2 formed a strongly support clade with the type isolates of Nothophoma quercina (Syd.) Q. Chen & L. Cai (basionym: Ampelomyces quercinus), which has been found on Quercus sp. in Ukraine (Chen et al. 2015). The procedure for Koch's postulates was followed to confirm fungal pathogenicity using 3-day-old mycelial disks. A total of 15 same-aged healthy fruits were divided into three groups, and each group received a different treatment. Artificial wounds were created on one group of fruits using a sterile pin, and a 5-mm mycelial plug of the fungus was placed on the injured tissues. Mycelial plugs were also placed on the surfaces of the sets of unwounded fruits. The remaining fruits were maintained as control and inoculated with sterile PDA plugs. The test was repeated three times. The wounded fruits exhibited symptoms after 8-10 identical to those observed in the field. The control group remained asymptomatic, and the morphology of the fungus reisolated from the inoculated fruits was similar to that of N. quercina. The phylogeny, together with morphological identification and inoculation results, confirmed the identity of the fungus as N. quercina (Chen et al. 2015). A previous study had also reported shoot canker caused by N. quercina in the Chinese quince (Yun and Oh 2016). However, to our knowledge, this is the first report of fruit canker caused by N. quercina in the Chinese quince.

6.
Microorganisms ; 8(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825007

ABSTRACT

Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress through inoculation using the rhizospheric strain-Pseudomonas koreensis MU2. The screening analysis of MU2 showed its high salt-tolerant potential, which solubilizes both silicate and phosphate. The isolate, MU2 produced gibberellic acid (GA1, GA3) and organic acids (malic acid, citric acid, acetic acid, and tartaric acid) in pure culture under both normal and salt-stressed conditions. The combined application of MU2, silicon, and phosphorus significantly improved silicon and phosphorus uptake, reduced Na+ ion influx by 70%, and enhanced K+ uptake by 46% in the shoots of soybean plants grown under salt-stress conditions. MU2 inoculation upregulated the salt-resistant genes GmST1, GmSALT3, and GmAKT2, which significantly reduced the endogenous hormones abscisic acid and jasmonic acid while, it enhanced the salicylic acid content of soybean. In addition, MU2 inoculation strengthened the host's antioxidant system through the reduction of lipid peroxidation and proline while, it enhanced the reduced glutathione content. Moreover, MU2 inoculation promoted root and shoot length, plant biomass, and the chlorophyll content of soybean plants. These findings suggest that MU2 could be a potential biofertilizer catalyst for the amplification of the use efficiency of silicon and phosphorus fertilizers to mitigate salt stress.

7.
J Zhejiang Univ Sci B ; 18(2): 125-137, 2017.
Article in English | MEDLINE | ID: mdl-28124841

ABSTRACT

Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.


Subject(s)
Endophytes/metabolism , Germination/physiology , Indoleacetic Acids/metabolism , Oxidative Stress , Plant Growth Regulators/metabolism , Plants, Medicinal/microbiology , Antioxidants/chemistry , Biodiversity , Evolution, Molecular , Gas Chromatography-Mass Spectrometry , Mutation , Oryza/genetics , Oryza/microbiology , Phylogeny , Seeds/physiology
8.
BMC Microbiol ; 16: 103, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27277006

ABSTRACT

BACKGROUND: Medicinal plants harboring endophytic fungi could carry significant potential for producing bioactive secondary metabolites. Endophytic fungi serve as alternate source of interesting compounds in their natural and modified synthetic forms to treat different diseases. In this regard, endophytic microflora associated with alkaloid-rich medicinal plants Rhazya stricta is least known. RESULTS: We isolated one new bioactive compound sorokiniol (1) along with two known cyclic peptides BZR-cotoxin I (2) and BZR-cotoxin IV (3) from fungal endophyte Bipolaris sorokiniana LK12. The structures of the isolated new and known compounds were elucidated through spectroscopic data, including 1D and 2D NMR ((1)H, (13)C, HSQC, HMBC, and NOESY), mass, and UV. The known peptides (2-3) were characterized by ESI-MS, MS/MS, and by comparing the NMR data with the literature. The isolated metabolites were assayed for their role against enzyme inhibition. Compound 1 was significantly inhibitory towards acetyl cholinestrase while the other compounds (2-3) had moderate anti-lipid peroxidation and urease activities. CONCLUSION: The present results suggest that the endophytic microorganism associated with indigenously important medicinal plants can offer a rich source of biologically active chemical constituents which could help in discovering enzyme inhibitory lead drugs.


Subject(s)
Apocynaceae/microbiology , Ascomycota/growth & development , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Ascomycota/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Endophytes/chemistry , Endophytes/growth & development , Lipid Peroxidation/drug effects , Magnetic Resonance Spectroscopy , Secondary Metabolism , Tandem Mass Spectrometry
9.
Ecotoxicol Environ Saf ; 122: 230-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26277540

ABSTRACT

Bioherbicides from plant extracts are an effective and environmentally friendly method to prevent weed growth. The present investigation was aimed at determining the inhibitory effect of bur cucumber seed extracts (BSE) on lettuce plant growth. Bur cucumber seeds were ground with water, and two different concentrations of seed extracts (10% and 20%) were prepared and applied to lettuce plants. Decreased plant height, number of leaves, leaf length, leaf width, anProd. Type: FTPd leaf area were found in lettuce exposed to BSE as compared with controls. A significant reduction in lettuce biomass was observed in 20% BSE-treated plants due to the presence of higher amounts of phenolic content in the extracts. Moreover, a significant inhibitory chemical, 2-linoleoyl glycerol, was identified in BSE extracts. The mechanism of plant growth inhibition was assayed in lettuce proteins by 2-dimensional electrophoresis (2-DE) and the LC-MS/MS method. In total, 57 protein spots were detected in plants treated with 20% BSE and control plants. Among these, 39 proteins were down-regulated and 18 proteins were up-regulated in plants exposed to 20% BSE as compared with controls. The presence of low levels of chlorophyll a/b binding protein and oxygen-evolving enhancer protein 1 in BSE-exposed plants reduced photosynthetic pigment synthesis and might be a reason for stunted plant growth. Indeed, the plant-growth stimulating hormone gibberellin was inhibited, and synthesis of stress hormones such as abscisic acid, jasmonic acid, and salicylic acid were triggered in lettuce by the effects of BSE. Uptake of essential nutrients, Ca, Fe, Mg, K, S, and Mo, was deficient and accumulation of the toxic ions Cu, Zn, and Na was higher in BSE-treated plants. The results of this study suggest that extracts of bur cucumber seeds can be an effective eco-friendly bioherbicide for weed control that work by inhibiting mechanisms of photosynthesis and regulating phytohormones and nutritional elements.


Subject(s)
Cucumis sativus/chemistry , Lactuca/drug effects , Plant Extracts/toxicity , Seeds/chemistry , Weed Control/methods , Abscisic Acid/metabolism , Biomass , Cyclopentanes/metabolism , Lactuca/growth & development , Lactuca/metabolism , Oxylipins/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Salicylic Acid/metabolism , Tandem Mass Spectrometry
10.
Int J Mol Med ; 30(5): 1194-202, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22948173

ABSTRACT

The titrated extract of Centella asiatica (TECA) is a reconstituted mixture comprising of asiatic acid, madecassic acid, asiaticoside and madecassoside, and is used as a therapeutic agent in wound healing and also as an anti-microbial, anticancer and anti-aging agent. Although these properties and the associated cell signaling pathways have been elucidated, the cellular mechanism of anti-photoaging upon ultraviolet (UV) exposure in normal human dermal fibroblasts (NHDFs) remains unknown. In this study, we investigated the photoprotective role of TECA via microRNA (miRNA) expression profiling analysis. Low dose of TECA did not exhibit toxicity and showed a protective effect against UVB irradiation in NDHFs. miRNA microarray experiments revealed that specific miRNAs were altered by TECA stimulation in UVB-irradiated NHDFs. Functional bioinformatic analysis showed that the putative target genes of the altered miRNAs were associated with the positive regulation of cell proliferation, anti-apoptosis, small GTPase- and Ras-mediated signal transduction and activation of MAPKK. Therefore, these results suggest that TECA may serve as a potential natural chemoprotective agent against UVB-mediated damage in NHDFs through changes in the expression of specific miRNAs.


Subject(s)
Fibroblasts/drug effects , MicroRNAs/genetics , Plant Extracts/pharmacology , Radiation-Protective Agents/pharmacology , Transcriptome/drug effects , Triterpenes/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Survival/drug effects , Cell Survival/radiation effects , Cells, Cultured , Centella , Dermis/cytology , Fibroblasts/radiation effects , Humans , MicroRNAs/metabolism , RNA Interference , Ultraviolet Rays
11.
Molecules ; 17(7): 7980-8, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22759911

ABSTRACT

We isolated and identified a gibberellin-producing Burkholderia sp. KCTC 11096 from agricultural field soils. The culture filtrate of plant growth promoting rhizobacteria (PGPR) significantly increased the germination and growth of lettuce and Chinese cabbage seeds. The ethyl acetate extract of the PGPR culture showed significantly higher rate of lettuce seed germination and growth as compared to the distilled water treated control. The ethyl acetate fraction of the Burkholderia sp. was subjected to bioassay-guided isolation and we obtained for the first time from a Burkholderia sp. the plant growth promoting compound rhizonin A (1), which was characterized through NMR and MS techniques. Application of various concentrations of 1 significantly promoted the lettuce seed germination as compared to control.


Subject(s)
Burkholderia/chemistry , Germination/drug effects , Lactuca/drug effects , Lactuca/growth & development , Peptides, Cyclic/pharmacology , Seeds/drug effects , Seeds/growth & development , Brassica/drug effects , Brassica/growth & development , Filtration , Hypocotyl/drug effects , Hypocotyl/growth & development , Peptides, Cyclic/chemistry , Plant Extracts/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development
12.
Molecules ; 17(1): 1103-12, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22267195

ABSTRACT

We have isolated five endophytic fungi from the roots of Capsicum annuum, Cucumis sativus and Glycine max. The culture filtrates (CF) of these endophytes were screened on dwarf mutant rice (Waito-C) and normal rice (Dongjin-byeo). Endophyte CAC-1A significantly inhibited the growth of Waito-C and Dongjin-byeo. Endophyte CAC-1A was identified as Paraconiothyrium sp. by sequencing the ITS rDNA region and phylogenetic analysis. The ethyl acetate fraction of Paraconiothyrium sp. suppressed the germination of Lactuca sativa and Echinochloa crus-galli seeds. The ethyl acetate fraction of the endophyte was subjected to bioassay-guided isolation and we obtained the phytotoxic compound ascotoxin (1) which was characterized through NMR and GC/MS techniques. Ascotoxin revealed 100% inhibitory effects on seed germination of Echinochloa crus-galli. Compound (1) was isolated for the first time from Paraconiothyrium sp.


Subject(s)
Brefeldin A/metabolism , Endophytes/isolation & purification , Herbicides/metabolism , Plant Extracts/metabolism , Saccharomycetales/isolation & purification , Brefeldin A/pharmacology , Echinochloa/drug effects , Echinochloa/physiology , Endophytes/metabolism , Germination/drug effects , Herbicides/pharmacology , Lactuca/drug effects , Lactuca/physiology , Oryza/drug effects , Oryza/physiology , Phylogeny , Plant Extracts/pharmacology , Plant Roots/microbiology , RNA, Ribosomal, 18S/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL