Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 16(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612951

ABSTRACT

BACKGROUND: The study investigated the impact of starch degradation products (SDexF) as prebiotics on obesity management in mice and overweight/obese children. METHODS: A total of 48 mice on a normal diet (ND) and 48 on a Western diet (WD) were divided into subgroups with or without 5% SDexF supplementation for 28 weeks. In a human study, 100 overweight/obese children were randomly assigned to prebiotic and control groups, consuming fruit and vegetable mousse with or without 10 g of SDexF for 24 weeks. Stool samples were analyzed for microbiota using 16S rRNA gene sequencing, and short-chain fatty acids (SCFA) and amino acids (AA) were assessed. RESULTS: Results showed SDexF slowed weight gain in female mice on both diets but only temporarily in males. It altered bacterial diversity and specific taxa abundances in mouse feces. In humans, SDexF did not influence weight loss or gut microbiota composition, showing minimal changes in individual taxa. The anti-obesity effect observed in mice with WD-induced obesity was not replicated in children undergoing a weight-loss program. CONCLUSIONS: SDexF exhibited sex-specific effects in mice but did not impact weight loss or microbiota composition in overweight/obese children.


Subject(s)
Pediatric Obesity , Solanum tuberosum , Child , Humans , Male , Female , Animals , Mice , Dextrins , Diet, Western , Dysbiosis , Overweight , RNA, Ribosomal, 16S/genetics , Body Weight , Starch/pharmacology , Fruit
2.
Nutrients ; 14(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631299

ABSTRACT

Preparations of resistant dextrins have become an interesting topic of research due to their properties, which bear resemblance those of prebiotics, e.g., the improvement of metabolic parameters, increased efficiency of the immune system and induction of vitamin production. The aim of this study was to investigate the effects of the resistant dextrin produced from potato starch on the growth dynamics of typical gastrointestinal microbiota and the activity of fecal enzymes in order to assess a possible exhibition of prebiotic properties. In the study, in vitro cultivation of co-cultures of Lactobacillus, Bifidobacterium, E. coli, Enterococcus, Clostridium and Bacteroides spp. was conducted on media enriched with the resistant dextrin. The CFU/mL for each strain was measured in time periods of 24, 48, 72, 96 and 168 h. Furthermore, the activities of α-glucosidase, α-galactosidase, ß-glucosidase, ß-galactosidase and ß-glucuronidase were determined using spectrophotometric methods at a wavelength of 400 nm. The results show that the resistant dextrin can be utilized as a source of carbon for the growth of intestinal bacteria. Moreover, the results revealed that, after 168 h of cultivation, it enhances the viability of probiotic strains of Lactobacillus and Bifidobacterium spp. and decreases the growth of other intestinal strains (Clostridium, Escherichia coli, Enterococcus and Bacteroides), which is demonstrated by a high Prebiotic Index (p < 0.05). Furthermore, there was no significant change in the pH of the cultures; however, the pace of the pH decrease during the cultivation was slower in the case of culture with resistant dextrin. Furthermore, it was revealed that usage of the resistant dextrin as a medium additive noticeably lowered the activities of ß-glucosidase and ß-glucuronidase compared to the control (p < 0.05), whereas the activities of the other fecal enzymes were affected to a lesser degree. The resistant dextrins derived from potato starch are a suitable prebiotic candidate as they promote the growth of beneficial strains of gut bacteria and improve health markers, such as the activity of fecal enzymes. Nevertheless, additional in vivo research is necessary to further assess the suspected health-promoting properties.


Subject(s)
Cellulases , Solanum tuberosum , Bacteria , Bifidobacterium/metabolism , Cellulases/metabolism , Cellulases/pharmacology , Clostridium , Coculture Techniques , Dextrins/chemistry , Dextrins/pharmacology , Enterococcus , Escherichia coli , Glucuronidase/metabolism , Lactobacillus , Prebiotics , Solanum tuberosum/chemistry , Starch/metabolism
3.
Molecules ; 26(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34577093

ABSTRACT

Dietary fiber can be obtained by dextrinization, which occurs while heating starch in the presence of acids. During dextrinization, depolymerization, transglycosylation, and repolymerization occur, leading to structural changes responsible for increasing resistance to starch enzymatic digestion. The conventional dextrinization time can be decreased by using microwave-assisted heating. The main objective of this study was to obtain dietary fiber from acidified potato starch using continuous and discontinuous microwave-assisted heating and to investigate the structure and physicochemical properties of the resulting dextrins. Dextrins were characterized by water solubility, dextrose equivalent, and color parameters (L* a* b*). Total dietary fiber content was measured according to the AOAC 2009.01 method. Structural and morphological changes were determined by means of SEM, XRD, DSC, and GC-MS analyses. Microwave-assisted dextrinization of potato starch led to light yellow to brownish products with increased solubility in water and diminished crystallinity and gelatinization enthalpy. Dextrinization products contained glycosidic linkages and branched residues not present in native starch, indicative of its conversion into dietary fiber. Thus, microwave-assisted heating can induce structural changes in potato starch, originating products with a high level of dietary fiber content.


Subject(s)
Dietary Fiber/analysis , Hot Temperature , Microwaves , Starch/chemistry , Acids/chemistry , Carbohydrate Conformation , Color , Dextrins/analysis , Dextrins/chemistry , Glucose/analysis , Glucose/chemistry , Microscopy, Electron, Scanning , Physical Phenomena , Solanum tuberosum/chemistry , Solubility , X-Ray Diffraction
4.
J Sci Food Agric ; 101(10): 4125-4133, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33368353

ABSTRACT

BACKGROUND: Fruit mousses are products with a relatively low amount of dietary fiber in a single portion, but with additional portions of soluble fiber they may be good alternative to fiber-rich snacks as take-away food. In the present study, the properties of new soluble dextrin fiber (SDexF) from potato starch were assessed to establish whether it could be used to enrich fruit mousses. The properties of SDexF that can affect processing and storage stability of enriched mousses were studied and compared with those of native potato starch and semiproducts (resulting from various drying temperatures). The effect of the addition of SDexF on the pasting properties of mousse was also analyzed. RESULTS: The application of food-grade hydrochloric and citric acids as catalysts in the dextrinization of food-grade potato starch allowed to SDexF to be obtained. Despite the differences in characteristics of the semiproducts, the final SDexF preparations were very similar in the meaning of solubility, dextrose equivalent (DE), retrogradation, and pasting properties. SDexF preparations were characterized by a significantly lower retrogradation tendency, peak viscosity, final viscosity, and gelatinization enthalpy in comparison with both native starch and semiproducts. Soluble dextrin fiber was successfully added to banana-apple mousse. The addition of SDexF to mousse did not cause any undesirable changes to the viscosity of the product, and surprisingly even resulted in mousse with lower viscosity. Turbidity and RVA studies revealed that SDexF was stable and retrogradation processes can be negligible during storage. CONCLUSION: The SDexF obtained from potato starch can be a novel functional substance to increase the dietary fiber content of fruit or fruit and vegetable mousses. © 2020 Society of Chemical Industry.


Subject(s)
Dextrins/chemistry , Food Additives/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Solanum tuberosum/chemistry , Dietary Fiber/analysis , Food Handling , Solubility , Temperature , Thermodynamics , Viscosity
5.
Int J Biol Macromol ; 163: 251-259, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32615230

ABSTRACT

Agrofood byproducts may be exploited as a source of biomolecules suitable for developing bioplastic materials. In this work, the feasibility of using starch, oil, and waxes recovered from potato chips byproducts for films production was studied. The recovered potato starch-rich fraction (RPS) contained an amylopectin/amylose ratio of 2.3, gelatinization temperatures varying from 59 to 71 °C, and a gelatinization enthalpy of 12.5 J/g, similarly to a commercial potato starch (CPS). Despite of its spherical and oval granules identical to CPS, RPS had a more amorphous structure and gave rise to low viscous suspensions, contradicting the typical B-type polymorph crystal structure and sluggish dispersions of CPS, respectively. When used for films production, RPS originated transparent films with lower roughness and wettability than CPS-based films, but with higher stretchability. In turn, when combined with RPS and CPS, oil or waxes recovered from frying residues and potato peels, respectively, allowed to develop transparent yellowish RPS- and CPS-based films with increased surface hydrophobicity, mechanical traction resistance, elasticity, and/or plasticity. Therefore, potato chips industry byproducts revealed to have thermoplastic and hydrophobic biomolecules that can be used to efficiently develop biobased plastics with improved surface properties and flexibility, opening an opportunity for their valorization.


Subject(s)
Edible Films , Plant Oils/chemistry , Solanum tuberosum/chemistry , Starch/chemistry , Waxes/chemistry , Amylopectin/chemistry , Amylose/chemistry , Chemical Phenomena , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Particle Size , Solubility
6.
Carbohydr Polym ; 243: 116499, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32532383

ABSTRACT

Medium-substituted esters of starch and higher fatty acids, structurally identified in the first part of paper were subjected to further analyses, mainly to check application potential. In order to determine the possibility of using the esters in the packaging industry, the glycerol-plasticized starch esters were extruded on a single screw extruder in the form of a film. The mechanical properties tests consisted of tensile and tear strength. Hydrophobicity, water absorption and oil absorption were checked as the processing and functional properties. Environmental tests, such as phytotoxicity on monocotyledonous and dicotyledonous plants and biodegradability in soil under strictly controlled conditions of the vegetation hall were carried out. Esterification increased the hydrophobicity of the starch and the tensile and tear strength, without losing important environmental features such as biodegradability and non-toxicity. The obtained polymer materials give hope for their use in the production of new ecofriendly and biodegradable packaging.


Subject(s)
Plant Oils/chemistry , Product Packaging , Starch , Hydrophobic and Hydrophilic Interactions , Starch/analogs & derivatives , Starch/chemistry , Tensile Strength
7.
Carbohydr Polym ; 137: 657-663, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26686176

ABSTRACT

In this study, potato starch was esterified with oleic acid, using 1-butyl-3-methylimidazolium chloride as a reaction medium and an immobilised lipase from Thermomyces lanuginosus as a catalyst. The degree of substitution (DS) of the products was determined by the volumetric method; and the best esterified product (with the highest DS) was determined by an elemental analysis. The effect of the reaction parameters on the DS, such as the time and the temperature, were also studied. The product with the highest DS (0.22) was found in the reaction carried out at 60 °C for 4h. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analyses confirmed the esterification of the potato starch. Furthermore, the results of X-ray diffraction (XRD) and a scanning electron microscopy (SEM) revealed that the crystallinity and the morphology of the native potato starch was slightly changed during its partial gelatinisation in the ionic liquid, and was completely destroyed as a result of the formation of the esters. The thermal stability of the starch oleate decreased, when compared to the unmodified starch, as was indicated by a thermal gravimetric analysis (TGA).


Subject(s)
Ionic Liquids/chemistry , Solanum tuberosum/chemistry , Starch/chemistry , Biocatalysis , Esterification , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Temperature
8.
Postepy Hig Med Dosw (Online) ; 69: 1031-41, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26400889

ABSTRACT

The objective of the present study was to compare the prebiotic properties of starch dextrins, that is, resistant dextrins obtained from potato starch in the process of simultaneous thermolysis and chemical modification, which were selected based on previous research. Both prepared dextrins met the definition criterion of dietary fiber and also the basic prebiotic criterion - they were not degraded by the digestive enzymes of the initial sections of the gastrointestinal tract. The growth of probiotic lactobacilli and bifidobacteria, as well as Escherichia coli, Enterococcus, Bacteroides, and Clostridium strains isolated from feces of healthy people, showed that both studied dextrins were utilized as a source of assimilable carbon and energy by the strains. Furthermore, better growth (higher numbers of cells) counts of probiotic bacteria than those of fecal isolates indicated that the studied resistant dextrins showed a selective effect. Both dextrins might be considered as substances with prebiotic properties due to their chemical and physical properties and selectivity towards the studied probiotic bacterial strains.


Subject(s)
Dextrins/chemistry , Dextrins/pharmacology , Dietary Fiber/metabolism , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Prebiotics , Feces/microbiology , Solanum tuberosum/chemistry
9.
J Sci Food Agric ; 92(4): 886-91, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-21969274

ABSTRACT

BACKGROUND: New starch preparations were produced by thermolysis of potato starch in the presence of inorganic (hydrochloric) and organic (citric and tartaric) acids under controlled conditions. The starch preparations were physicochemically and structurally characterised and analysed for their resistance to enzymatic digestion in vitro. RESULTS: The content of resistant fraction in dextrin D1, obtained by heating starch acidified with hydrochloric and citric acids, determined by the AOAC 2001.03 and pancreatin-gravimetric methods was similar (~200 g kg⁻¹). In the case of dextrin D3, obtained by heating starch acidified with hydrochloric and tartaric acids, the result of determination by the pancreatin-gravimetric method was almost four times higher than that obtained with the AOAC 2001.03 method. The enzymatic tests revealed that dextrin D3 obtained with excess tartaric acid can be classified as RS4, which can only be partially determined by enzymatic-gravimetric methods. Tartaric acid at high concentration had a significantly stronger influence on starch hydrolysis than citric acid. This was confirmed by chromatographic analysis of dextrins and chemical investigation of the reducing power. CONCLUSION: The results confirmed the possibility of applying dextrins, prepared under specific conditions, as soluble dietary fibre.


Subject(s)
Dextrins/chemistry , Dextrins/metabolism , Prebiotics/analysis , Starch/chemistry , Starch/metabolism , Bacterial Proteins/metabolism , Chemical Phenomena , Citric Acid/chemistry , Food, Fortified , Glycoside Hydrolases/metabolism , Hot Temperature , Hydrochloric Acid/chemistry , Hydrolysis , Molecular Weight , Osmolar Concentration , Oxidation-Reduction , Pancreatin/metabolism , Plant Tubers/chemistry , Solanum tuberosum/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Tartrates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL