Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Chem Chem Phys ; 24(27): 16862-16875, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35789353

ABSTRACT

The response of B12N12-nanocages towards DNA-nucleobases (adenine, guanine, cytosine, and thymine) is investigated using MP2 and DFT (M06-2X) levels of theory with the 6-311+G** basis set. Multiple BN-cage-nucleobase structures for each nucleobase emerged depending on the number of Lewis base centers of nucleobases. The main source of stability of these complexes is the N/O→B dative bond, where the N or O atom of nucleobases donates the lone-pair electron to one of the boron atoms of the nanocage. Nitrogen atoms of the BN-cage, adjacent to the B-site forming dative bond, act as a proton acceptor to form multiple (N-HN and N-HC) hydrogen bonds, where proton-donors NH and CH are part of nucleobases. MP2/6-311+G** adsorption energies are -43.1, -43.4 and -45.3 kcal mol-1 (B12N12-adenine), -37.1, -41.9 and -43.3 kcal mol-1 (B12N12-guanine), -41.3 and -43.4 (B12N12-cytosine), and -29.3 and -31.3 (B12N12-thymine). Similar adsorption energies were recorded for larger BN-fullerenes-nucleobases, namely B16N16 and B24N24. Changes in adsorption energies and structures of these nano-bio-hybrid materials in aqueous media are also discussed. Computationally cost-effective MP2 single point calculations at the M06-2X optimized geometries were found to be reliable in predicting adsorption energies. The effect of the BN-network and H-bonds on the adsorption process is assessed by comparing the results with simple BH3-nucleobase models. BSSE correction to the adsorption energy is not recommended.


Subject(s)
Protons , Thymine , Adenine/chemistry , Adsorption , Cytosine/chemistry , DNA/chemistry , Guanine/chemistry , Hydrogen Bonding , Thymine/chemistry
2.
Chem Biodivers ; 16(1): e1800305, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30335227

ABSTRACT

Six dibenzylbutyrolactonic lignans ((-)-hinokinin (1), (-)-cubebin (2), (-)-yatein (3), (-)-5-methoxyyatein (4), dihydrocubebin (5) and dihydroclusin (6)) were isolated from Piper cubeba seed extract and evaluated against Schistosoma mansoni. All lignans, except 5, were able to separate the adult worm pairs and reduce the egg numbers during 24 h of incubation. Lignans 1, 3 and 4 (containing a lactone ring) were the most efficient concerning antiparasitary activity. Comparing structures 3 and 4, the presence of the methoxy group at position 5 appears to be important for this activity. Considering 1 and 3, it is possible to see that the substitution pattern change (methylenedioxy or methoxy groups) in positions 3' and 4' alter the biological response, with 1 being the second most active compound. Computational calculations suggest that the activity of compound 4 can be correlated with the largest lipophilicity value.


Subject(s)
Anthelmintics/pharmacology , Lignans/pharmacology , Piper/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Density Functional Theory , Female , Lignans/chemistry , Lipids/chemistry , Male , Mice, Inbred BALB C , Models, Theoretical , Molecular Docking Simulation , Molecular Structure , Parasite Egg Count , Plant Extracts/chemistry , Proton Magnetic Resonance Spectroscopy , Schistosoma mansoni/chemistry , Static Electricity , Tubulin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL