Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Cardiol ; 341: 70-73, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34461161

ABSTRACT

BACKGROUND: The heart has an intrinsic ability to regenerate, orchestrated by progenitor or stem cells. However, the relative complexity of non-resident cardiac progenitor cell (CPC) therapy makes modulation of resident CPCs a more attractive treatment target. Thiamine analogues improve resident CPC function in pre-clinical models. In this double blinded randomised controlled trial (identifier: ACTRN12614000755639), we examined whether thiamine would improve CPC function in humans. METHODS AND RESULTS: High dose oral thiamine (one gram twice daily) or matching placebo was administered 3-5 days prior to coronary artery bypass surgery (CABG). Right atrial appendages were collected at the time of CABG, and CPCs isolated. There was no difference in the primary outcome (proliferation ability of CPCs) between treatment groups. Older age was not associated with decreased proliferation ability. In exploratory analyses, isolated CPCs in the thiamine group showed an increase in the proportion of CD34-/CD105+ (endoglin) cells, but no difference in CD34-/CD90+ or CD34+ cells. Thiamine increased maximum force developed by isolated trabeculae, with no difference in relaxation time or beta-adrenergic responsiveness. CONCLUSION: Thiamine does not improve proliferation ability of CPC in patients undergoing CABG, but increases the proportion of CD34-/CD105+ cells. Having not met its primary endpoint, this study provides the impetus to re-examine CPC biology prior to any clinical outcome-based trial examining potential beneficial cardiovascular effects of thiamine.


Subject(s)
Stem Cells , Thiamine , Aged , Endoglin , Heart Atria , Humans , Signal Transduction
2.
J Manipulative Physiol Ther ; 44(5): 420-431, 2021 06.
Article in English | MEDLINE | ID: mdl-34376321

ABSTRACT

OBJECTIVE: The purpose of the present study was to determine the neuroendocrine response after a thoracic spinal manipulation in people with Achilles tendinopathy. METHODS: This was a randomized 2-sequence, 2-period crossover trial. A total of 24 participants, mean (standard deviation) age of 48 (7) years, with a diagnosis of Achilles tendinopathy (>3 mo) were randomly assigned into sequence 1 (sham intervention and then thoracic spinal manipulation) or sequence 2 (thoracic spinal manipulation and then sham intervention). The trial was conducted at a university laboratory with a washout period of 1 week. The primary outcome measure was the testosterone/cortisol (T/C) ratio (salivary samples). The secondary outcome measures included heart rate variability (measured with electrocardiography) and total oxygenation index (nmol/L) of calf muscle and Achilles tendon (measured with near-infrared spectroscopy). A 2-way mixed-model analysis of variance was performed. The statistic of interest was the condition by time interaction. RESULTS: A statistically significant condition by time interaction was found for the T/C ratio (mean difference: -0.16; confidence interval: -0.33 to 0.006; interaction: P < .05) and the total oxygenation index (mean difference: 1.35; confidence interval: -1.3 to 4.1; interaction: P < .05) of calf muscle but not for Achilles tendon (P = .6); however, no difference was found for heart rate variability (P = .5). CONCLUSION: In people with Achilles tendinopathy, thoracic spinal manipulation resulted in immediate increase in the total oxygenation index in the calf muscle followed by an increase in the T/C ratio 6 hours post-intervention.


Subject(s)
Achilles Tendon , Manipulation, Spinal , Tendinopathy , Cross-Over Studies , Humans , Middle Aged , Muscle, Skeletal , Tendinopathy/therapy
4.
Cardiovasc Res ; 97(1): 55-65, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22997160

ABSTRACT

AIMS: Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. METHODS AND RESULTS: Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. CONCLUSION: We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Myocytes, Cardiac/drug effects , Pentose Phosphate Pathway/drug effects , Stem Cells/drug effects , Thiamine/analogs & derivatives , Animals , Antigens, CD/metabolism , Antigens, Ly/metabolism , Apoptosis/drug effects , Biomarkers/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Endoglin , Flow Cytometry , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Glycation End Products, Advanced/metabolism , Humans , Immunohistochemistry , Ki-67 Antigen/metabolism , Male , Membrane Proteins/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , RNA Interference , Receptors, Cell Surface/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Superoxides/metabolism , Thiamine/pharmacology , Transfection , Transketolase/metabolism
5.
J Mol Cell Cardiol ; 49(4): 625-38, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20542491

ABSTRACT

Benfotiamine (BFT) is a transketolase activator that directs glucose to the pentose phosphate pathway. The present study investigated whether BFT improves the recovery after myocardial infarction (MI) and explored underlying mechanisms of protection. Non-diabetic and streptozotocin-induced type 1 diabetic mice were supplemented with BFT (70 mg/kg/day in drinking water) for 4 weeks and then subjected to MI or sham operation. Cardiac function was monitored by echocardiography. At two weeks post-MI, intra-ventricular pressure was measured by Millar tip-catheter and hearts were collected for biochemical, immunohistochemical and expressional analyses. No treatment effect was observed in sham-operated mice. Post-MI mortality was higher in diabetic mice and hemodynamic studies confirmed the worsening effect of diabetes on functional recovery. Furthermore, diabetic mice demonstrated increased cardiomyocyte apoptosis, reduced reparative angiogenesis, larger scars, enhanced oxidative stress, and blunted activation of the pro-survival VEGF receptor-2/Akt/Pim-1 signaling pathway. BFT improved post-MI survival, functional recovery and neovascularization and reduced cardiomyocyte apoptosis and neurohormonal activation in diabetic as well as in non-diabetic mice. In addition, BFT stimulated the activity of pentose phosphate pathway enzymes, leading to reduction of oxidative stress, phosphorylation/activation of VEGF receptor-2 and Akt and increased Pim-1, pBad and Bcl-2 levels. These effects were contrasted on silencing glucose-6-phosphate dehydrogenase, the key enzyme in pentose phosphate pathway, or inhibiting Akt. BFT benefits post-MI recovery through stimulation of pro-survival mechanisms and containment of neurohormonal response. These results may have implications for the treatment of myocardial ischemia.


Subject(s)
Glucosephosphate Dehydrogenase/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Neurotransmitter Agents/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thiamine/analogs & derivatives , Animals , Blotting, Western , Chelating Agents/therapeutic use , Echocardiography , Male , Mice , Microscopy, Fluorescence , Signal Transduction/drug effects , Thiamine/therapeutic use
6.
Circ Heart Fail ; 3(2): 294-305, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20107192

ABSTRACT

BACKGROUND: The increasing incidence of diabetes mellitus will result in a new epidemic of heart failure unless novel treatments able to halt diabetic cardiomyopathy early in its course are introduced. This study aimed to determine whether the activity of the Akt/Pim-1 signaling pathway is altered at critical stages of diabetic cardiomyopathy and whether supplementation with vitamin B1 analog benfotiamine (BFT) helps to sustain the above prosurvival mechanism, thereby preserving cardiomyocyte viability and function. METHODS AND RESULTS: Untreated streptozotocin-induced type 1 or leptin-receptor mutant type 2 diabetic mice showed diastolic dysfunction evolving to contractile impairment and cardiac dilatation and failure. BFT (70 mg/kg(-1)/d(-1)) improved diastolic and systolic function and prevented left ventricular end-diastolic pressure increase and chamber dilatation in both diabetic models. Moreover, BFT improved cardiac perfusion and reduced cardiomyocyte apoptosis and interstitial fibrosis. In hearts of untreated diabetic mice, the expression and activity of Akt/Pim-1 signaling declined along with O-N-acetylglucosamine modification of Akt, inhibition of pentose phosphate pathway, activation of oxidative stress, and accumulation of glycation end products. Furthermore, diabetes reduced pSTAT3 independently of Akt. BFT inhibited these effects of diabetes mellitus, thereby conferring cardiomyocytes with improved resistance to high glucose-induced damage. The phosphoinositide-3-kinase inhibitor LY294002 and dominant-negative Akt inhibited antiapoptotic action of BFT-induced and Pim-1 upregulation in high glucose-challenged cardiomyocytes. CONCLUSIONS: These results show that BFT protects from diabetes mellitus-induced cardiac dysfunction through pleiotropic mechanisms, culminating in the activation of prosurvival signaling pathway. Thus, BFT merits attention for application in clinical practice.


Subject(s)
Carrier Proteins/metabolism , Diabetes Mellitus, Experimental/complications , Heart Failure/prevention & control , Proto-Oncogene Proteins c-pim-1/metabolism , Thiamine/analogs & derivatives , Analysis of Variance , Animals , Apoptosis/drug effects , Blood Flow Velocity , Blotting, Western , Cells, Cultured , Chromones/pharmacology , Diastole , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fibrosis/prevention & control , Heart Failure/etiology , Heart Failure/metabolism , Immunohistochemistry , Mice , Microfilament Proteins , Morpholines/pharmacology , Oxidative Stress , Random Allocation , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/metabolism , Signal Transduction , Thiamine/pharmacology , Up-Regulation
7.
J Thorac Cardiovasc Surg ; 137(1): 223-31, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19154929

ABSTRACT

BACKGROUND: In spite of recent advances in coronary interventional therapy, reperfusion injury is still considered to be a major problem in patients undergoing surgical procedures, such as bypass grafting. Here we demonstrate a novel therapeutic strategy against ischemia-reperfusion injury: vagally mediated prevention of reperfusion-induced opening of mitochondrial permeability transition pore. METHODS: We investigated the effects of efferent vagal stimulation on myocardial reperfusion injury with ex vivo and in vitro rat models. In the ex vivo model the hearts were perfused with intact vagal innervation, which allowed us to study the effects of the vagal nerve on the heart without other systemic effects. RESULTS: Compared with sham stimulation, vagal stimulation exerted a marked anti-infarct effect irrespective of the heart rate (34% +/- 6% vs 85% +/- 9% at a heart rate of 300 beats/min, 37% +/- 4% vs 43% +/- 5% at a heart rate of 250 beats/min, and 39% +/- 4% vs 88% +/- 7% at a heart rate of 350 beats/min) after a 30-minute period of global ischemia, activated cell-survival Akt cascade, prevented downregulation of the antiapoptotic protein Bcl-2, and suppressed cytochrome-c release and caspase-3 activation. Furthermore, vagal stimulation-treated hearts exhibited a significant improvement in left ventricular developed pressure (78 +/- 5 vs 45 +/- 8 mm Hg) and a significant attenuation in an incremental change in left ventricular end-diastolic pressure during reperfusion. These beneficial effects of vagal stimulation were abolished by a permeability transition pore opener, atractyloside. In the in vitro study with primary-cultured cardiomyocytes, acetylcholine prevented a reoxygenation-induced collapse in mitochondrial transmembrane potential through inhibition of permeability transition pore opening. CONCLUSION: Vagal stimulation would be a potential adjuvant therapy for the rescue of ischemic myocardium from reperfusion injury, and the protective effects are independent of its bradycardiac effects.


Subject(s)
Electric Stimulation Therapy , Mitochondrial Membrane Transport Proteins/physiology , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Animals , Bradycardia , Male , Mitochondrial Permeability Transition Pore , Rats , Rats, Wistar , Vagus Nerve
8.
Circulation ; 112(2): 164-70, 2005 Jul 12.
Article in English | MEDLINE | ID: mdl-15998674

ABSTRACT

BACKGROUND: Myocardial ischemia (MI) leads to derangements in cellular electrical stability and the generation of lethal arrhythmias. Vagal nerve stimulation has been postulated to contribute to the antifibrillatory effect. Here, we suggest a novel mechanism for the antiarrhythmogenic properties of vagal stimulation during acute MI. METHODS AND RESULTS: Under anesthesia, Wistar rats underwent 30 minutes of left coronary artery (LCA) ligation with vagal stimulation (MI-VS group, n=11) and with sham stimulation (MI-SS group, n=12). Eight of the 12 rats in the MI-SS group had ventricular tachyarrhythmia (VT) during 30-minute LCA ligation; on the other hand, VT occurred in only 1 of the 11 rats in the MI-VS group (67% versus 9%, respectively). Atropine administration abolished the antiarrhythmogenic effect of vagal stimulation. Immunoblotting revealed that the MI-SS group showed a marked reduction in the amount of phosphorylated connexin43 (Cx43), whereas the MI-VS group showed only a slight reduction compared with the sham operation and sham stimulation group (37+/-20% versus 79+/-18%). Immunohistochemistry confirmed that the MI-induced loss of Cx43 from intercellular junctions was prevented by vagal stimulation. In addition, studies with rat primary-cultured cardiomyocytes demonstrated that acetylcholine effectively prevented the hypoxia-induced loss of phosphorylated Cx43 and ameliorated the loss of cell-to-cell communication as determined by Lucifer Yellow dye transfer assay, which supports the in vivo results. CONCLUSIONS: Vagal nerve stimulation exerts antiarrhythmogenic effects accompanied by prevention of the loss of phosphorylated Cx43 during acute MI and thus plays a critical role in improving ischemia-induced electrical instability.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Connexin 43/physiology , Electric Stimulation Therapy , Myocardial Ischemia/therapy , Vagus Nerve , Acetylcholine/pharmacology , Animals , Cell Communication , Connexin 43/metabolism , Disease Models, Animal , Efferent Pathways , Male , Myocardial Ischemia/complications , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphorylation , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL