Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Hum Cell ; 34(2): 436-444, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33387361

ABSTRACT

Carcinostatic effects of combined use of ascorbic acid (Asc), 2-O-phospho- or 6-O-palmitoyl ascorbate (Asc2Phos, Asc6Palm) or diverse alkanoyl Asc, and nano-sized platinum-poly(N-vinyl-pyrrolidone) colloid (PVP-Pt; 2-nm diameter) were examined on human esophagus carcinoma-derived cells KYSE70. Cell viability was repressed by 'Asc6Palm + PVP-Pt' mixture more markedly than by Asc6Palm or PVP-Pt alone, together with cell shrinkage and fragmentation, in contrast to no additive carcinostatic effect of 'Asc + PVP-Pt' or 'Asc2Phos + PVP-Pt'. The effects might be partly due to efficiency for intracellular uptake of PVP-Pt, as previously shown by our studies that Pt atoms composed of PVP-Pt were incorporated into human tongue carcinoma cells by 9.6-fold compared to normal human tongue epitheliocytes. Asc6Palm was advantageous for intracellular uptake, in terms of the proper balance for molecular hydrophilicity-lipophilicity (BMHL), whereas 6-O-stearoyl (C18) Asc or 2,6-O-dipalmitoyl (2 × C16) was demonstrated to be less carcinostatic owing to a lower BMHL. Although esterolytically converted from Asc6Palm, Asc was necessitated to be retained for efficient carcinostasis, and demonstrated by HPLC-coulometric ECD analysis to be appreciably stabilized in electrolytically generated hydrogen (dissolved hydrogen: 0.575 mg/L)-water, but scarcely in hydrogen-gas-bubbled water (0.427 mg/L), Mg stick-derived hydrogen (0.044 mg/L) water, or tap water, suggesting that hydrogen-rich water suppresses oxidative decomposition of Asc. Thus, Asc6Palm plus PVP-Pt with hydrogen-rich water supplement might be applicable for carcinostatic therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Ascorbic Acid/pharmacology , Carcinoma, Squamous Cell/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Colloids/pharmacology , Esophageal Neoplasms/pathology , Hydrogen/pharmacology , Nanocomposites , Antineoplastic Agents/therapeutic use , Ascorbic Acid/chemistry , Ascorbic Acid/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Colloids/chemistry , Colloids/therapeutic use , Esophageal Neoplasms/drug therapy , Humans , Hydrogen/therapeutic use , Platinum/pharmacology , Water
2.
J Therm Biol ; 95: 102805, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33454037

ABSTRACT

Hydrogen-rich water bath devices are commercially available, but have been scarcely clarified for heat-retention effects. In this study, heat-retention effects of hydrogen-rich water bath were assessed by thermographic clinical trials, which employed twenty-four healthy subjects. The thermograms indicated that, under the same conditions (41 °C, 10-min bathing), hydrogen-rich water bath (hydrogen concentrations: 185-548 µg/L; oxidation-reduction potentials: -167 to -91 mV, versus 0.8 µg/L and +479 mV for normal bath, respectively) brought about the heat-retention being more marked than those of normal water bath for several body-parts in the order as follows: abdomen > upper legs > arms > hands > feet, for 30- and 60-min post-bathing, being in contrast to scarce heat-retention for head, armpits and lower legs. Then, as reflection to promotive effects on blood stream, we also examined the thickness of fingertip-capillary in hands. The thickness was expanded in the hydrogen-rich water bath more markedly than that in the normal water bath, suggesting that the hydrogen-rich water bath may have the hydrogen-based promotive effect, exceeding over mere heat retention-based effects, on blood circulation of the whole body. Meanwhile, the heat-retention in hydrogen-rich water bath weakly or moderately correlated with contents of the subcutaneous fat, whole body fat and body mass index, and inversely correlated with skeletal muscle rates, although their correlation degrees did not obviously exceed over normal water bath, with a poor relation with the basal metabolism rate. Thus, the hydrogen-rich water bath was suggested to exert heat-retention effects exceeding over normal water bath, in diverse body-parts such as abdomen, upper legs, arms and hands, via promotion to blood flow which was reflected by expanding the thickness of capillary. The heat-retention after bathing can be noted as effects of the hydrogen-rich water bath, which is applicable for most of people widespread regardless of their body composition index.


Subject(s)
Baths/methods , Body Temperature , Hydrotherapy/methods , Adult , Body Composition , Female , Humans , Hydrogen/analysis , Male , Middle Aged , Oxidation-Reduction , Thermography , Water/chemistry
3.
Mater Sci Eng C Mater Biol Appl ; 49: 269-273, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25686949

ABSTRACT

We assessed the repression of lipid-droplet formation in mouse mesenchymal stromal preadipocytes OP9 by specified oat extracts (Hatomugi, Coix lacryma-jobi var. ma-yuen) named "SPH" which were proteolytically and glucosyl-transferredly prepared from finely-milled oat whole-grain. Stimulation of OP9 preadipocytes with insulin-containing serum-replacement promoted differentiation to adipocytes, concurrently with an increase in the intracellular lipid droplets by 51.5%, which were repressed by SPH-bulk or SPH-water-extract at 840ppm, to 33.5% or 46.9%, respectively, but not by SPH-ethanol-extract at the same dose, showing the hydrophilic property of the anti-adipogenetic ingredients. The intracellular lipid droplets were scanty for intact preadipocytes, small-sized but abundant for the SPH-unadministered adipocytes, and large-sized but few for SPH-bulk-administered adipocytes being coexistent with many lipid-droplet-lacking viable cells, suggesting "the all-or-none rule" for lipid-droplet generation in cell-to-cell. Hydrogen-peroxide-induced cell death in human epidermal keratinocytes HaCaT was prevented by SPH-bulk at 100 or 150ppm by 5.6-8.1%, being consistent with higher viabilities of SPH-bulk-administered OP9 cells, together with repressions of both cell shrinkage and cell detachment from the culture substratum. In three-dimensional subcutaneous adipose tissue models reconstructed with HaCaT-keratinocytes and OP9-preadipocytes, lipid droplets were accumulated in dermal OP9-cell-parts, and repressed to 43.5% by SPH-bulk at 840ppm concurrently with marked diminishment of huge aggregates of lipid droplets. Thus SPH-bulk suppresses adipogenesis-associated lipid-droplet accumulation during differentiation of OP9 preadipocytes together with lowered cytotoxicity to either HaCaT keratinocytes or the preadipocytes.


Subject(s)
Adipocytes/drug effects , Avena/chemistry , Lipid Droplets/drug effects , Plant Extracts/pharmacology , Subcutaneous Fat/drug effects , Adipogenesis/drug effects , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Line , Humans , Hydrogen Peroxide/pharmacology , Keratinocytes/drug effects , Mice
4.
J Nanosci Nanotechnol ; 13(1): 52-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23646697

ABSTRACT

We investigated the anti-melanogenetic efficacy of hydrogen-occluding silica microcluster (H2-Silica), which is a silsesquioxane-based compound with hydrogen interstitially embedded in a matrix of caged silica, against melanogenesis in HMV-II human melanoma cells and L-DOPA-tyrosinase reaction [EC1.14.18.1]. HMV-II cells were subjected to oxidative stress by ultraviolet ray-A (UVA) exposure of 3-times of 0.65 J/cm2 summed up to 1.95 J/cm2. After UVA irradiation, HMV-II cells were stimulated to produce melanin by 2.72-fold more abundantly than unirradiated control. When HMV-II cells were treated with H2-Silica of 20 ppm or kojic acid of 28.4 ppm before and after UVA-irradiation, the amount of melanin was repressed to 12.2% or 14.5% as compared to that of UVA-irradiated control, respectively. That is, H2-Silica exhibited a comparable efficacy to the whitening agent kojic acid. The H2-Silica could prevent melanogenesis in HMV-II cells by low-level doses at 1-10 ppm, and cell viability and apoptosis event did not change even by high-level doses at 100-1000 ppm. On the contrary, kojic acid was cytotoxic at the concentration of 14-28 ppm or more. By microscopic observation, H2-Silica suppressed such properties indicative of melanin-rich cells as cellular hypertrophy, cell process formation, and melanogenesis around the outside of nuclei. The enzymatic assay using L-DOPA and mushroom tyrosinase demonstrated that H2-Silica restrained UVA-mediated melanin formation owing to down-regulation of tyrosinase activity, which could be attributed to scavenging of free radicals and inhibition of L-DOPA-to-dopachrome oxidation by hydrogen released from H2-Silica. Thus H2-Silica has a potential to prevent melanin production against UVA and serves as a skin-lightening ingredient for supplements or cosmetics.


Subject(s)
Hydrogen/administration & dosage , Melanoma/etiology , Melanoma/prevention & control , Monophenol Monooxygenase/metabolism , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/prevention & control , Silicon Dioxide/administration & dosage , Capsules/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Humans , Melanoma/enzymology , Neoplasms, Radiation-Induced/enzymology , Treatment Outcome , Ultraviolet Rays/adverse effects
5.
Int J Hyperthermia ; 29(1): 30-7, 2013.
Article in English | MEDLINE | ID: mdl-23286696

ABSTRACT

PURPOSE: The aim of this study was to evaluate inhibitory effects of L-ascorbic acid-2-O-phosphate-Na(2) (APS), a pro-vitamin C, combined with hyperthermia on adipogenic differentiation of mouse stromal cells, OP9. MATERIALS AND METHODS: OP9 preadipocytes were differentiated with serum replacement, administered with APS, and simultaneously treated with hyperthermia using a capacitive-resistive electric transfer (CRet) apparatus, which was conducted repeatedly twice a day. After 2 days, intracellular lipid droplets were stained with Oil Red O, then observed by microscopy and assessed spectrophotometrically. RESULTS: After stimulation by serum replacement for 2 days, lipid droplets were accumulated surrounding nucleus of OP9 cells. When APS of 0.15-0.6 mM was administered without hyperthermia, the amount of lipid droplets was markedly suppressed to 50.5%∼-11.3% versus the undifferentiated control, and diminished huge aggregates of lipid droplets. In OP9 cells treated by hyperthermia at 42°C for 0.5 min, 1 min or 3 min in the absence of APS, adipogenesis was suppressed abruptly in a time-dependent manner to 95.4%, 18.7% or -5.5%, respectively. Whereas, the percentage of adipogenesis was 96.8% in OP9 cells treated by mild hyperthermia alone at 41°C for 1 min. The simultaneous application of APS and hyperthermia at 41°C for 1 min markedly suppressed the accumulation of lipid droplets to 25.7%∼-66.2%. By scanning electron microscopy (SEM) observation, the surface of OP9 cells treated with APS and hyperthermia appeared to have the morphological property of undifferentiated OP9 cells. CONCLUSION: Combined treatment of APS and mild hyperthermia suppresses adipogenesis in OP9 cells, particularly in lipid droplets accumulation during spontaneous differentiation of OP9 preadipocytes.


Subject(s)
Adipogenesis/drug effects , Antioxidants/administration & dosage , Ascorbic Acid/analogs & derivatives , Hyperthermia, Induced , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Antineoplastic Agents/administration & dosage , Ascorbic Acid/administration & dosage , Cell Line , Lipid Metabolism/drug effects , Mice , Stromal Cells
6.
J Nanosci Nanotechnol ; 10(10): 6769-74, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21137794

ABSTRACT

Highly purified and organic solvent-free fullerene-C60 was dissolved, at nearly saturated concentration of 278 ppm, in squalane prepared from olive oil, which is designated as LipoFullerene (LF-SQ) and was examined for usage as a cosmetic ingredient with antioxidant ability. The aim of this study was to assess the anti-wrinkle formation efficacy of LF-SQ in subjects. A total of 23 Japanese women (group I: age 38.9 +/- 3.8, n = 11, group II; age 39.4 +/- 4.3, n = 12) were enrolled in an 8-week trial of LF-SQ blended cream in a randomized, matched pair double-blind study. The LF-SQ cream was applied twice daily on the right or left half of the face, and squalane blended cream (without fullerene-C60) was applied as the placebo on another half of the face. As clinical evaluations of wrinkle grades, visual observation and photographs, and silicone replicas of both crow's feet areas were taken at baseline (0 week) and at 4th and 8th weeks. Skin replicas were analyzed using an optical profilometry technique. The wrinkle and skin-surface roughness features were calculated and statistically analyzed. Subsequently, trans-epidermal water loss (TEWL), moisture levels of the stratum corneum, and visco-elasticity (suppleness: RO and elasticity: R7) were measured on cheeks by instrumental analysis. LF-SQ cream enhanced the skin moisture and the anti-wrinkle formation. LF-SQ cream that was applied on a face twice daily was not effective at 4th week, but significantly more effective than the placebo at 8th week (p < 0.05) without severe side effects. The roughness-area ratio showed significant improvement (p < 0.05) at 8th week with LF-SQ cream as compared to 0 week with LF-SQ cream, but no significant difference was detected between LF-SQ cream and the placebo. We suggest that LF-SQ could be used as an active ingredient for wrinkle-care cosmetics.


Subject(s)
Cosmetics/administration & dosage , Fullerenes/administration & dosage , Skin Aging/drug effects , Skin/drug effects , Squalene/analogs & derivatives , Administration, Topical , Adult , Cosmetics/chemistry , Double-Blind Method , Female , Fullerenes/chemistry , Humans , Olive Oil , Photography , Plant Oils/chemistry , Squalene/administration & dosage , Squalene/chemistry
7.
Free Radic Res ; 44(9): 1072-81, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20815770

ABSTRACT

Along with differentiation of mouse stromal preadipocytes OP9 into adipocytes, intracellular ROS, especially superoxide anion radicals detected by NBT reduction assay, were found to appreciably increase, mainly in cytoplasmic area, parallelling with increases in intracellular lipid-droplet accumulation, whereas undifferentiated OP9 cells kept lower levels of ROS and lipid-droplets. beta-Carotene bleaching assay showed that super-highly hydroxylated fullerene (SHH-F; C(60) (OH)(44)) exerted higher antioxidant ability than highly hydroxylated fullerene (HH-F; C(60) (OH)(32-34)) or lowly hydroxylated fullerene (LH-F; C(60) (OH)(6-12)). Differentiation-dependent lipid-droplet accumulation was suppressed by SHH-F or HH-F more efficiently than LH-F. Furthermore, SHH-F significantly repressed intracellular ROS generation accompanied by adipocyte differentiation. Thus, lipid-droplet accumulation was shown to positively correlate with ROS upon the differentiation of OP9 preadipocytes into adipocytes and SHH-F significantly suppressed intracellular ROS together with repression of intracellular lipid accumulation.


Subject(s)
Adipocytes/drug effects , Cell Differentiation/drug effects , Fullerenes/pharmacology , Lipid Metabolism/drug effects , Oxidative Stress/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Animals , Cell Line , Cell Survival/drug effects , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Fullerenes/chemistry , Fullerenes/metabolism , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Mice , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL