Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Commun Biol ; 6(1): 868, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620401

ABSTRACT

Reactive oxygen species (ROS) are harmful for the human body, and exposure to ultraviolet irradiation triggers ROS generation. Previous studies have demonstrated that ROS decrease mitochondrial membrane potential (MMP) and that Mg2+ protects mitochondria from oxidative stress. Therefore, we visualized the spatio-temporal dynamics of Mg2+ in keratinocytes (a skin component) in response to H2O2 (a type of ROS) and found that it increased cytosolic Mg2+ levels. H2O2-induced responses in both Mg2+ and ATP were larger in keratinocytes derived from adults than in keratinocytes derived from newborns, and inhibition of mitochondrial ATP synthesis enhanced the H2O2-induced Mg2+ response, indicating that a major source of Mg2+ was dissociation from ATP. Simultaneous imaging of Mg2+ and MMP revealed that larger Mg2+ responses corresponded to lower decreases in MMP in response to H2O2. Moreover, Mg2+ supplementation attenuated H2O2-induced cell death. These suggest the potential of Mg2+ as an active ingredient to protect skin from oxidative stress.


Subject(s)
Hydrogen Peroxide , Oxidative Stress , Infant, Newborn , Adult , Humans , Reactive Oxygen Species , Hydrogen Peroxide/toxicity , Keratinocytes , Mitochondria , Adenosine Triphosphate
2.
Cells ; 11(15)2022 07 22.
Article in English | MEDLINE | ID: mdl-35892565

ABSTRACT

Magnesium ions (Mg2+) have favorable effects such as the improvement of barrier function and the reduction of inflammation reaction in inflammatory skin diseases. However, its mechanisms have not been fully understood. Microarray analysis has shown that the gene expressions of polyamine synthases are upregulated by MgCl2 supplementation in human HaCaT keratinocytes. Here, we investigated the mechanism and function of polyamine production. The mRNA and protein levels of polyamine synthases were dose-dependently increased by MgCl2 supplementation, which were inhibited by U0126, a MEK inhibitor; CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor; and Naphthol AS-E, a cyclic AMP-response-element-binding protein (CREB) inhibitor. Similarly, reporter activities of polyamine synthases were suppressed by these inhibitors, suggesting that MEK, GSK3, and CREB are involved in the transcriptional regulation of polyamine synthases. Cell viability was reduced by ultraviolet B (UVB) exposure, which was rescued by MgCl2 supplementation. The UVB-induced elevation of reactive oxygen species was attenuated by MgCl2 supplementation, which was inhibited by cysteamine, a polyamine synthase inhibitor. Our data indicate that the expression levels of polyamine synthases are upregulated by MgCl2 supplementation mediated through the activation of the MEK/GSK3/CREB pathway. MgCl2 supplementation may be useful in reducing the UVB-induced oxidative stress in the skin.


Subject(s)
Magnesium , Ultraviolet Rays , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Dietary Supplements , Glycogen Synthase Kinase 3/metabolism , Humans , Keratinocytes/metabolism , Magnesium/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Polyamines/metabolism
3.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008494

ABSTRACT

Skin barrier damage is present in the patients with hereditary disorders of the magnesium channel, but the molecular mechanism has not been fully understood. We found that the expressions of hyaluronan synthase (HAS), HAS2 and HAS3 are influenced by MgCl2 concentration in human keratinocyte-derived HaCaT cells. The exposure of cells to a high concentration (5.8 mM) of MgCl2 induced the elevation of HAS2/3 expression, which was inhibited by mRNA knockdown of nonimprinted in Prader-Willi/Angelman syndrome-like domain containing 4 (NIPAL4). Similarly, the content of hyaluronic acid (HA) was changed according to MgCl2 concentration and the expression of NIPAL4. The MgCl2 supplementation increased the reporter activities of HAS2/3, which were inhibited by NIPAL4 knockdown, indicating that the expressions of HAS2/3 are up-regulated at the transcriptional level. The reporter activities and mRNA levels of HAS2/3, and the production of HA were inhibited by CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor, and naphthol AS-E, a cyclic AMP-response element binding protein (CREB) inhibitor. Furthermore, the mutation in putative CREB-binding sites of promoter region in HAS2/3 genes inhibited the MgCl2 supplementation-induced elevation of promoter activity. Our results indicate that the expressions of HAS2/3 are up-regulated by MgCl2 supplementation in HaCaT cells mediated through the activation of GSK3 and CREB. Magnesium may play a pivotal role in maintaining the skin barrier function and magnesium supplementation may be useful to enhance moisturization and wound repair in the skin.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Glycogen Synthase Kinase 3/metabolism , Hyaluronan Synthases/metabolism , Keratinocytes/drug effects , Magnesium/pharmacology , Cell Line , Dietary Supplements , HaCaT Cells , Humans , Hyaluronic Acid/metabolism , Keratinocytes/metabolism , RNA, Messenger/metabolism , Signal Transduction/drug effects , Skin/drug effects , Skin/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL