Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431850

ABSTRACT

Human noroviruses are the most common pathogens known to cause acute gastroenteritis, a condition that can lead to severe illness among immunocompromised individuals such as organ transplant recipients and the elderly. To date, no safe and effective vaccines or therapeutic agents have been approved for treating norovirus infections. Therefore, we aimed to demonstrate the virucidal activity of grape seed extract (GSE), which contains >83% proanthocyanidins, against murine norovirus (MNV), a surrogate for human norovirus. GSE showed virucidal activity against MNV in a dose- and time-dependent manner. Atomic force microscopic analysis showed viral particle aggregates after treatment of MNV with GSE. MNV treated with 50 µg/mL of GSE for 10 min resulted in the absence of pathogenicity in an animal model of infection, indicating that GSE has irreversible virucidal activity against MNV particles. Thus, GSE may aid in the development of treatments for norovirus infections.


Subject(s)
Caliciviridae Infections , Grape Seed Extract , Norovirus , Humans , Mice , Animals , Aged , Grape Seed Extract/pharmacology , Phenol , Caliciviridae Infections/drug therapy , Phenols
2.
Mar Drugs ; 18(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414158

ABSTRACT

Influenza viruses cause a significant public health burden each year despite the availability of anti-influenza drugs and vaccines. Therefore, new anti-influenza virus agents are needed. Rhamnan sulfate (RS) is a sulfated polysaccharide derived from the green alga Monostroma nitidum. Here, we aimed to demonstrate the antiviral activity of RS, especially against influenza A virus (IFV) infection, in vitro and in vivo. RS showed inhibitory effects on viral proliferation of enveloped viruses in vitro. Evaluation of the anti-IFV activity of RS in vitro showed that it inhibited both virus adsorption and entry steps. The oral administration of RS in IFV-infected immunocompetent and immunocompromised mice suppressed viral proliferation in both mouse types. The oral administration of RS also had stimulatory effects on neutralizing antibody production. Fluorescent analysis showed that RS colocalized with M cells in Peyer's patches, suggesting that RS bound to the M cells and may be incorporated into the Peyer's patches, which are essential to intestinal immunity. In summary, RS inhibits influenza virus infection and promotes antibody production, suggesting that RS is a potential candidate for the treatment of influenza virus infections.


Subject(s)
Antiviral Agents/pharmacology , Chlorophyta , Deoxy Sugars/pharmacology , Immunosuppression Therapy , Influenza A virus/drug effects , Mannans/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Deoxy Sugars/administration & dosage , Deoxy Sugars/therapeutic use , Disease Models, Animal , Female , Humans , Influenza, Human/drug therapy , Japan , Mannans/administration & dosage , Mannans/therapeutic use , Mice , Mice, Inbred BALB C , Oceans and Seas , Phytotherapy
3.
Bioorg Med Chem ; 13(9): 3295-308, 2005 May 02.
Article in English | MEDLINE | ID: mdl-15809165

ABSTRACT

It is thought that selective 5-HT(4) receptor agonists-such as 4-amino-5-chloro-2-methoxy-N-[1-(6-oxo-6-phenylhexyl)piperidin-4ylmethyl]benzamide (2)-have the ability to enhance both upper and lower gastrointestinal motility without any significant adverse effects. Modification of 2 was performed. Variation of the piperidin-4ylmethyl moiety of 2 led to a decrease in the binding affinity for the 5-HT(4) receptor. Following conversion of the carbonyl group on the benzoyl part to a hydroxyl or sulfoxide group, the binding affinity for the 5-HT(4) receptor was retained although the effect on defecation was reduced. Many of the 4-amino-5-chloro-2-methoxy-N-(piperidin-4ylmethyl)benzamides that had a ether or sulfide moiety in the side-chain part at the 1-position of the piperidine exhibited high affinity for the 5-HT(4) receptor. Among these, phenylthio 41c and benzylthio derivative 44 were selective 5-HT(4) receptor agonists, and had a similar effect on defecation to compound 2.


Subject(s)
Benzamides/chemical synthesis , Serotonin 5-HT4 Receptor Agonists , Animals , Benzamides/pharmacology , Drug Evaluation, Preclinical , Gastrointestinal Motility/drug effects , Guinea Pigs , Male , Mice , Mice, Inbred ICR , Molecular Structure , Rats , Rats, Wistar , Receptors, Dopamine D2/agonists
SELECTION OF CITATIONS
SEARCH DETAIL