Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 9(1): 15186, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31645575

ABSTRACT

The current study sought the effective mitigation measure of seawater-induced damage to mung bean plants by exploring the potential roles of acetic acid (AA). Principal component analysis (PCA) revealed that foliar application of AA under control conditions improved mung bean growth, which was interlinked to enhanced levels of photosynthetic rate and pigments, improved water status and increased uptake of K+, in comparison with water-sprayed control. Mung bean plants exposed to salinity exhibited reduced growth and biomass production, which was emphatically correlated with increased accumulations of Na+, reactive oxygen species and malondialdehyde, and impaired photosynthesis, as evidenced by PCA and heatmap clustering. AA supplementation ameliorated the toxic effects of seawater, and improved the growth performance of salinity-exposed mung bean. AA potentiated several physio-biochemical mechanisms that were connected to increased uptake of Ca2+ and Mg2+, reduced accumulation of toxic Na+, improved water use efficiency, enhanced accumulations of proline, total free amino acids and soluble sugars, increased catalase activity, and heightened levels of phenolics and flavonoids. Collectively, our results provided new insights into AA-mediated protective mechanisms against salinity in mung bean, thereby proposing AA as a potential and cost-effective chemical for the management of salt-induced toxicity in mung bean, and perhaps in other cash crops.


Subject(s)
Acetic Acid/economics , Acetic Acid/pharmacology , Cost-Benefit Analysis , Salinity , Seawater/chemistry , Vigna/physiology , Biomass , Gases/metabolism , Minerals/metabolism , Osmosis , Oxidative Stress/drug effects , Phenotype , Photosynthesis/drug effects , Pigments, Biological/metabolism , Plant Leaves/drug effects , Plant Stomata/drug effects , Plant Stomata/physiology , Plant Transpiration/drug effects , Potassium/metabolism , Principal Component Analysis , Reactive Oxygen Species/metabolism , Sodium/metabolism , Vigna/drug effects , Water
SELECTION OF CITATIONS
SEARCH DETAIL