Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 15(4): e0232224, 2020.
Article in English | MEDLINE | ID: mdl-32343717

ABSTRACT

The Amazon region is rich in genetic resources such as oilseeds which have potentially important local commercial exploitation. Despite its high concentration of bioactive compounds, cacay (Caryodendron orinocense Karst.) oil is poorly investigated and explored. Thus, this study focuses on the physicochemical characterization (moisture, density, and saponification, iodine, and acidity values), fatty acid composition as determined by gas chromatograph mass spectrometry (GC/MS), total phenolic content (TPC), and antioxidant activity (DPPH and ABTS radical scavenging assay) of cacay oil, coconut oil and a coconut/cacay oil blend, also known as cacay butter. The antibacterial activity of cacay oil was additionally evaluated. Our study demonstrated that cacay oil presents a high amount of polyunsaturated fatty acid (PUFA) (58.3%) with an emphasis on linoleic acid and a lower acidity value (2.67 ± 0.01 cg I2/g) than butter and coconut oil, indicating a low concentration of free fatty acids. In contrast, cacay butter and coconut oil presented higher saturated fatty acid percentages (69.1% and 78.4%, respectively) and higher saponification values (242.78 and 252.22 mg KOH/g, respectively). The samples showed low moisture and relative density between 912 and 916 kg/m3. The hydrophilic fraction of cacay oil was highlighted in the quantification of TPC (326.27 ± 6.79 mg GAE/kg) and antioxidant capacity in vitro by DPPH radical scavenging assay (156.57 ± 2.25 µmol TE/g). Cacay oil inhibited the growth of Bacillus cereus (44.99 ± 7.68%), Enterococcus faecalis (27.76 ± 0.00%), and Staphylococcus aureus (11.81 ± 3.75%). At long last, this is the first study reporting the physicochemical characterization and bioactive properties of cacay butter. Coconut oil and cacay butter showed great oxidative stability potential due to higher contents of saturated fatty acids. Moreover, cacay oil presents as an alternative source of raw materials for cosmetic and biotechnology industries due to its high concentration of PUFA and for being a rich source of phenolic compounds.


Subject(s)
Coconut Oil/chemistry , Euphorbiaceae/chemistry , Plant Oils/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chemical Phenomena , Coconut Oil/pharmacology , Fatty Acids/chemistry , Fatty Acids/pharmacology , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Microbial Sensitivity Tests , Phenols/chemistry , Phenols/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Oils/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL