Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 13(1): 10397, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369701

ABSTRACT

The utilization of nanotechnology and biotechnology for enhancing the synthesis of plant bioactive chemicals is becoming increasingly common. The hairy root culture technique can be used to increase secondary metabolites such as tropane alkaloids. Agrobacterium was used to induce hairy roots from various explants of Hyoscyamus muticus. The effect of nano-silver particles (AgNPs) at concentrations of 0, 25, 50, 100, and 200 mg/L on tropane alkaloids synthesis, particularly hyoscyamine and scopolamine, was studied in transgenic hairy root cultures. Different types of explants obtained from 10-day-old seedlings of H. muticus were inoculated with two strains of Agrobacterium rhizogenes (15,834 and A4). The antimicrobial activity of an ethanolic extract of AgNPs-induced hairy root cultures of H. muticus was tested. The frequency of hairy roots was higher in hypocotyl, root, leaf, and stem explants treated with A. rhizogenes strain A4 compared to those treated with strain 15,834. In transgenic hairy root cultures, AgNPs application at a concentration of 100 mg/L resulted in the highest total tropane alkaloid production, which exhibited broad-spectrum antimicrobial activity. The study demonstrated the potential of nano-silver as an elicitor for promoting the production of target alkaloids in Hyoscyamus muticus hairy root cultures, which exhibit high biological activity.


Subject(s)
Alkaloids , Anti-Infective Agents , Hyoscyamus , Metal Nanoparticles , Silver/pharmacology , Silver/metabolism , Tropanes/pharmacology , Tropanes/metabolism , Alkaloids/pharmacology , Alkaloids/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL