Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Bioorg Med Chem ; 21(21): 6634-41, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24012376

ABSTRACT

The objective of this study was to synthesize and evaluate a novel fluorine-18 labeled deuterium substituted analogue of rasagiline (9, [(18)F]fluororasagiline-D2) as a potential PET radioligand for studies of monoamine oxidase B (MAO-B). The precursor compound (6) and reference standard (7) were synthesized in multi-step syntheses. Radiolabeling of 9 was accomplished by a two-step synthesis, compromising a nucleophilic substitution followed by hydrolysis of the sulfamidate group. The incorporation radiochemical yield from fluorine-18 fluoride was higher than 30%, the radiochemical purity was >99% and the specific radioactivity was >160GBq/µmol at the time of administration. In vitro compound 7 inhibited the MAO-B activity with an IC50 of 173.0±13.6nM. The MAO-A activity was inhibited with an IC50 of 9.9±1.1µM. The fluorine-18 version 9 was characterized in the cynomolgus monkey brain where a high brain uptake was found (275% SUV at 4min). There was a higher uptake in the striatum and thalamus compared to the cortex and cerebellum. A pronounced blocking effect (50% decrease) was observed in the specific brain regions after administration of l-deprenyl (0.5mg/kg) 30min prior to the administration of 9. Radiometabolite studies demonstrated 40% of unchanged radioligand at 90min post injection. An efficient radiolabeling of 9 was successfully established and in the monkey brain 9 binds to MAO-B rich regions and its binding is blocked by the selective MAO-B compound l-deprenyl. The radioligand 9 is a potential candidate for human PET studies.


Subject(s)
Indans/chemistry , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/chemistry , Radiopharmaceuticals/chemistry , Animals , Brain/diagnostic imaging , Cerebral Cortex/metabolism , Deuterium/chemistry , Fluorine Radioisotopes/chemistry , Humans , Indans/metabolism , Macaca fascicularis/metabolism , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/metabolism , Positron-Emission Tomography , Protein Binding , Radiopharmaceuticals/metabolism , Thalamus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL