Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Nanomedicine ; 17: 4073-4085, 2022.
Article in English | MEDLINE | ID: mdl-36111313

ABSTRACT

Purpose: Recent advances in nanotechnology have given rise to the potential utilization of nanoparticles as food, nano-medicine/biomedicines. Patient: The study aimed to investigate the effects of nano-zinc oxide (nano-zinc) on the bio-assimilation of mineral (Zn) in mice, aged 3-6 weeks. Methods: ZnO nanoparticles were added to the basal diet as a supplement at amounts of 0.07, 0.14 and 0.21 mg/kg. The synthesized material was characterized by Fourier transform infrared spectrophotometer, particle size, scanning electron microscope, Thermogravimetric Analysis Thermal, X-ray diffraction spectrophotometer and Zeta potential. Results: In-vitro bioavailability of synthesized group ZnO (120 nm) was 43%, whereas for standard group ZnO (50 nm) was reported as 55%. In-vivo bioavailability of zinc oxide illustrated the maximum absorption level compared with the control. In-vivo toxicity was characterized as damage done to the liver and spleen tissues with a high dose of 0.21 mg/kg, while smaller doses indicated no toxic effects. Conclusion: The study provided important insights on the toxicological effects of ZnO nanoparticles, depending on dose rate and bio-assimilation, as well as particles, under various conditions (in-vitro and in-vivo). These findings will motivate further detailed research on nano-based medicine for alleviating malnutrition conditions.


Subject(s)
Nanoparticles , Zinc Oxide , Animals , Mice , Nanotechnology , Particle Size , Zinc , Zinc Oxide/toxicity
2.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142578

ABSTRACT

Saponins are natural compounds found in plants and have a diverse range of applications. However, the therapeutic potential of saponins in regulating cytotoxicity, angiogenesis, and inflammation in mammalian cells is yet to be explored. Here, we investigated the therapeutic effects of saponins from green tea by exploring the cytotoxic effects of saponins by inducing apoptosis in the human cancer cell lines hepatocellular carcinoma (HEPG2) and colorectal adenocarcinoma (HT29). The anti-angiogenesis effect of saponins was also investigated in human umbilical vein endothelial cells (HUVEC). We explored the ability of saponins to attenuate inflammation in a dose-dependent manner in normal human cells. It was found that saponins exhibit cytotoxic effects in cancer cells and not in normal cells at the same concentration. Cytotoxicity was measured by inducing apoptosis by enhancing caspase-3 (cas-3) activation and B-cell lymphoma-2 (Bcl-2)-associated X protein (BAX) gene expression and suppressing the antiapoptotic protein, Bcl-2. The inhibition of HUVEC proliferation was due to the suppression of the phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), vascular endothelial growth factor receptor-2 (VEGFR-2), and nuclear factor kappa B (NF-κB). We also observed the antioxidant potential of green tea-derived saponins against free radicals in reactive oxygen species (ROS)-induced cells. Here we observed that the saponins exhibited free radical scavenging activities and activated nuclear factorerythroid 2-related factor 2 (NRF-2) leading to the upregulation of antioxidant-related genes in human embryonic kidney 293 (HEK293) cells. Furthermore, we demonstrated that the anti-inflammatory effects were due to the suppression of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in HEK293 cells. The significance of the work is we are the first to report on the anti-cancer effects of saponins based on the anti-inflammatory, antioxidant, anti-angiogenesis, and apoptosis induction properties. In conclusion, green tea-derived saponins could be effective therapeutics for the treatment of cancer.


Subject(s)
Proto-Oncogene Proteins c-akt , Saponins , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Caspase 3/metabolism , Endothelial Cells/metabolism , HEK293 Cells , Humans , Inflammation/drug therapy , Interleukin-6/metabolism , Mammals/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Tea , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , bcl-2-Associated X Protein/metabolism
3.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408478

ABSTRACT

Tauopathy is one of the major causes of neurodegenerative disorders and diseases such as Alzheimer's disease (AD). Hyperphosphorylation of tau proteins by various kinases leads to the formation of PHF and NFT and eventually results in tauopathy and AD; similarly, neuroinflammation also exaggerates and accelerates neuropathy and neurodegeneration. Natural products with anti-tauopathy and anti-neuroinflammatory effects are highly recommended as safe and feasible ways of preventing and /or treating neurodegenerative diseases, including AD. In the present study, we isolated theasaponin E1 from ethanol extract of green tea seed and evaluated its therapeutic inhibitory effects on tau hyper-phosphorylation and neuroinflammation in neuroblastoma (SHY-5Y) and glioblastoma (HTB2) cells, respectively, to elucidate the mechanism of the inhibitory effects. The expression of tau-generating and phosphorylation-promoting genes under the effects of theasaponin E1 were determined and assessed by RT- PCR, ELISA, and western blotting. It was found that theasaponin E1 reduced hyperphosphorylation of tau and Aß concentrations significantly, and dose-dependently, by suppressing the expression of GSK3 ß, CDK5, CAMII, MAPK, EPOE4(E4), and PICALM, and enhanced the expression of PP1, PP2A, and TREM2. According to the ELISA and western blotting results, the levels of APP, Aß, and p-tau were reduced by treatment with theasaponin E1. Moreover, theasaponin E1 reduced inflammation by suppressing the Nf-kB pathway and dose-dependently reducing the levels of inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha etc.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Saponins , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphorylation , Saponins/pharmacology , Saponins/therapeutic use , Seeds/metabolism , Tea , tau Proteins/metabolism
4.
PLoS One ; 16(12): e0256562, 2021.
Article in English | MEDLINE | ID: mdl-34936645

ABSTRACT

Pectinolytic enzymes or pectinases are synthesized naturally by numerous microbes and plants. These enzymes degrade various kinds of pectin which exist as the major component of the cell wall in plants. A pectinase gene encoding endo-polygalacturonase (endo-PGase) enzyme was isolated from Pectobacterium carotovorum a plant pathogenic strain of bacteria and successfully cloned into a secretion vector pHT43 having σA-dependent promoter for heterologous expression in Bacillus subtilis (WB800N).The desired PCR product was 1209bp which encoded an open reading frame of 402 amino acids. Recombinant proteins showed an estimated molecular weight of 48 kDa confirmed by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis. Transformed B. subtilis competent cells harbouring the engineered pHT43 vector with the foreign endo-PGase gene were cultured in 2X-yeast extract tryptone medium and subsequently screened for enzyme activity at various temperatures and pH ranges. Optimal activity of recombinant endo-PGase was found at 40°C and pH 5.0. To assay the catalytic effect of metal ions, the recombinant enzyme was incubated with 1 mM concentration of various metal ions. Potassium chloride increased the enzyme activity while EDTA, Zn++ and Ca++, strongly inhibited the activity. The chromatographic analysis of enzymatic hydrolysates of polygalacturonic acid (PGA) and pectin substrates using HPLC and TLC revealed tri and tetra-galacturonates as the end products of recombinant endo-PGase hydrolysis. Conclusively, endo-PGase gene from the plant pathogenic strain was successfully expressed in Bacillus subtilis for the first time using pHT43 expression vector and could be assessed for enzyme production using a very simple medium with IPTG induction. These findings proposed that the Bacillus expression system might be safer to escape endotoxins for commercial enzyme production as compared to yeast and fungi. Additionally, the hydrolysis products generated by the recombinant endo-PGase activity offer their useful applications in food and beverage industry for quality products.


Subject(s)
Bacillus subtilis/growth & development , Metabolic Engineering/methods , Pectobacterium carotovorum/enzymology , Polygalacturonase/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Hexuronic Acids/metabolism , Pectins/metabolism , Pectobacterium carotovorum/genetics , Polygalacturonase/genetics , Potassium Chloride/metabolism , Promoter Regions, Genetic
5.
Biomed Res Int ; 2021: 2521273, 2021.
Article in English | MEDLINE | ID: mdl-34812408

ABSTRACT

Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis, antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1) in vitro in human umbilical vein endothelial cells (HUVECs), 3T3-L1 preadipocytes respectively, and in vivo using a high-fat and carbohydrate diet-induced obesity mouse model. Orlistat was used as a positive control, while untreated cells and animals were normal controls (NCs). Adipose tissue, liver, and blood were analyzed after dissection. Extracted stevia compounds and green tea seed saponin E1 exhibited pronounced antiobesity effects when combined. RASE1 inhibited HUVEC proliferation and tube formation by suppressing VEGFR2, NF-κB, PIK3, and-catenin beta-1 expression levels. RASE1 inhibited 3T3-L1 adipocyte differentiation and lipid accumulation by downregulating adipogenesis- and lipogenesis-promoting genes. RASE1 oral administration reduced mouse body and body fat pad weight and blood cholesterol, TG, ALT, AST, glucose, insulin, and adipokine levels. RASE1 suppressed adipogenic and lipid metabolism gene expression in mouse adipose and liver tissues and enhanced AMP-activated protein kinase levels in liver and adipose tissues and in serum adiponectin. RASE1 suppressed the NF-κB pathway and proinflammatory cytokines IL-10, IL-6, and TNF-α levels in mice which involve inflammation and progression of obesity. The overall results indicate RASE1 is a potential therapeutic formulation and functional food for treating or preventing obesity and inflammation.


Subject(s)
Biological Products/therapeutic use , Inflammation/drug therapy , Obesity/drug therapy , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Angiogenesis Inhibitors/therapeutic use , Animals , Biological Products/administration & dosage , Biological Products/toxicity , Disease Models, Animal , Diterpenes, Kaurane/administration & dosage , Drug Compounding , Drug Synergism , Female , Glucosides/administration & dosage , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/metabolism , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Lipogenesis/genetics , Lipolysis/drug effects , Mice , Mice, Inbred ICR , Obesity/genetics , Obesity/metabolism , Oleanolic Acid/administration & dosage , Oleanolic Acid/analogs & derivatives , Phytotherapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saponins/administration & dosage , Signal Transduction/drug effects , Stevia/chemistry , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL