Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Trials ; 23(1): 689, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986353

ABSTRACT

BACKGROUND: High intensity and endurance exercises lead to exercise-induced oxidative stress (EIOS), exercise-induced muscle damage (EIMD), and inflammation, which are the influencing factors on muscle soreness, localized swelling, and sports performance decrease. Therefore, the purpose of this study is to determine the effectiveness of Tribulus terrestris (TT) as an herbal supplement with antioxidant and anti-inflammatory properties on the nutritional, oxidative, inflammatory, and anti-inflammatory status, as well as the sports performance of recreational runners. METHODS/DESIGN: This study is a double-blind, randomized, placebo-controlled trial, which will be conducted among recreational runners of Tabriz stadiums, Iran. Thirty-four recreational runners will be selected, and participants will be assigned randomly to two groups: to receive 500 mg TT supplement or placebo capsules twice daily for 2 weeks. Both groups will do high-intensity interval training (HIIT) workouts during the study. Baseline and post-intervention body composition, muscle pain, and aerobic and anaerobic performance will be assessed. In addition, assessment of malondialdehyde (MDA), total antioxidant capacity (TAC), total oxidant status (TOS), superoxide dismutase (SOD), glutathione peroxidase (GPx), uric acid (UA), 8-iso-prostaglandin F2α (8-iso-PGF2α), protein carbonyl (PC), catalase (CAT), glutathione (GSH), nitric oxide (NO), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), creatine kinase (CK), myoglobin (MYO), lactate dehydrogenase (LDH), insulin-like growth factor-1 (IGF-1) irisin, cortisol, and brain-derived neurotrophic factor (BDNF) will be done during three blood samplings. Changes in oxidative stress, anti/inflammatory biomarkers, and sports performance will be assessed as primary outcomes. DISCUSSION: This study will be the first to assess the potential effects of TT on recreational runners. Our results will contribute to the growing body of knowledge regarding TT supplementation on the nutritional, oxidative, inflammatory, and anti-inflammatory status and sports performance in recreational runners. TRIAL REGISTRATION: Iranian Registry of Clinical Trials ( www.irct.ir ) (ID: IRCT20150205020965N8 ). Registration date: 13 February 2021.


Subject(s)
Dietary Supplements , Tribulus , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Biomarkers , Double-Blind Method , Humans , Inflammation/prevention & control , Iran , Myalgia/drug therapy , Oxidative Stress , Randomized Controlled Trials as Topic , Running
2.
J Int Soc Sports Nutr ; 14: 11, 2017.
Article in English | MEDLINE | ID: mdl-28439212

ABSTRACT

BACKGROUND: Athletes have a large extent of oxidant agent production. In the current study, we aimed to determine the influence of thyme extract on the endurance exercise performance, mitochondrial biogenesis, and antioxidant status in rats. METHODS: Twenty male Wistar rats were randomly divided into two groups receiving either normal drinking water (non-supplemented group, n = 10) or thyme extract, 400 mg/kg, (supplemented group, n = 10). Rats in both groups were subjected to endurance treadmill training (27 m/min, 10% grade, 60 min, and 5 days/week for 8 weeks). Finally, to determine the endurance capacity, time to exhaustion treadmill running at 36 m/min speed was assessed. At the end of the endurance capacity test, serum and soleus muscle samples were collected and their superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, as well as malondialdehyde (MDA) concentration were measured. Protein expression of PGC-1α, as a marker of mitochondrial biogenesis, was also determined in the soleus muscle tissue by immunoblotting assay. RESULTS: Findings revealed that the exhaustive running time in the treatment group was significantly (p < 0.05) prolonged. Both serum and soleus muscle MDA levels, as an index of lipid peroxidation, had a threefold increase in the thyme extract supplemented group (t18 = 8.11, p < 0.01; t18 = 4.98, p < 0.01 respectively). The activities of SOD and GPx of the soleus muscle were significantly (p < 0.05) higher in the non-supplemented group, while there was no significant difference in serum SOD, GPx activities, and total antioxidant capacity between groups. Furthermore, thyme supplementation significantly (p < 0.05) decreased PGC-1α expression. CONCLUSIONS: Thyme extract supplementation increased endurance exercise tolerance in intact animals, although decrease of oxidative stress and regulation of the PGC-1α protein expression are not considered as underlying molecular mechanisms.


Subject(s)
Dietary Supplements , Plant Extracts/pharmacology , Thymus Plant , Animals , Antioxidants/metabolism , Lipid Peroxidation/drug effects , Male , Models, Animal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/blood , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects , Physical Conditioning, Animal , Physical Endurance/drug effects , Plant Extracts/administration & dosage , Random Allocation , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL