Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 4229, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378780

ABSTRACT

The main aim of this work is to study the effect of different nutrient supply systems and their effect on the performance of the Nile Tilapia (Oreochromis niloticus) and Lettuce (Lactuca sativa var. crispa) plant integration system. To achieve that, five treatments having different culture systems (T1: Aquaculture (control), T2: Hydroponics (standard requirement: N = 210, P = 31, K = 234, Mg = 48, Ca = 200, S = 64, Fe = 14, Mn = 0.5, Zn = 0.05, B = 0.5, Cu = 0.02 and Mo = 0.01 ppm), T3: Aquaponics without nutrients addition, T4: Aquaponics with supplementary nutrients (KNO3, 101 g L-1, KH2PO4, 136 g L-1, Ca(NO3)2, 236 g L-1, MgSO4, 246 g L-1, K2SO4, 115 g L-1 and chelates for trace elements) in water (EC is 800 ppm) and T5: Aquaponics with supplementary nutrients spray on plants) were carried out. The previous systems were operated at three flow rates, namely, 1.0, 1.5 and 2.0 L h-1 plant-1. The various water quality parameters, plant growth and fish growth were studied. The result indicated that the highest values of N, P, k, Ca and Mg consumption rate were found with T2 and 1.5 L h-1 plant-1 of flow rate. The root length, fresh and dry of shoot and root for lettuce plants grown in T2 system was better than those grown in different culture system (T3, T4 and T5). Different culture systems showed significant effect on fish growth in terms of weight gain, specific growth rate and feed efficiency ratio. Higher growth rate was observed in treatment T3 as compared to other treatments. The production costs ranged from 2820.5 to 4885.4 LE ($ = 30.92 LE) for all culture systems.


Subject(s)
Cichlids , Animals , Lactuca , Hydroponics , Aquaculture , Nutrients
2.
Sci Rep ; 14(1): 1882, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253681

ABSTRACT

Bio-diesel is used for engine as a replacement of diesel fuel which is characterized by lower emission, low pollution and renewable some of fuel. This study focus on how to enhance the production of bio-oil from Jatropha seeds by using microwave and ultrasonic as pre-treatments. To achieve that, the effects of extraction temperature (60, 80, 100 and 120 °C) and extraction screw speed (60, 90 and 120 rpm) on oil extraction yield and quality, extraction energy requirements and extraction time and were studied. Studying the effect of pretreatments by microwave and ultrasonic on the yield, energy and time of extraction were studied. The results most important indicate that the highest oil yield (25.1%) was recorded at 120 °C extraction temperature and 60 rpm screw speed. The energy required for extraction ranged from 8 to 11.5 W.h depending on temperature and speed of extraction. The results indicated that using both pretreatments improve the oil yield by 5.03% for microwave and by 6.75% for ultrasonic. Finally, the results concluded that to produce 1 kg of biodiesel you need 1.1 kg raw oil and consume from 2052.5 W.h energy requirement.


Subject(s)
Jatropha , Plant Oils , Polyphenols , Ultrasonics , Humans , Biofuels , Microwaves , Egypt , Seeds
3.
Sci Rep ; 14(1): 2625, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38297102

ABSTRACT

The main aim of this study is to determine the physical and chemical properties of biochar synthesized from different materials (straw rice, sawdust, sugar cane, and tree leaves) at different pyrolysis temperatures (400, 600, and 800 °C). The physical and chemical properties such as moisture content, water holding capacity, bulk density, and porosity; and pH, electrical conductivity (EC), organic matter, organic carbon, total nitrogen, potassium, phosphorus, calcium, magnesium, sodium, and sulfur were determined, respectively. The results show that the biochar yield decreased with increasing pyrolysis temperature, and the values of the analyzed properties varied depending on the type of biochar and pyrolysis temperature. The moisture content ranged from 1.11 to 4.18%, and the water holding capacity ranged from 12.9 to 27.6 g water g-1 dry sample. The highest value of bulk density (211.9 kg m-3) was obtained from sawdust at a pyrolysis temperature of 800 °C. The porosity values ranged from 45.9 to 63.7%. The highest values of pH and EC (10.4 and 3.46 dS m-1) were obtained from tree leaves at a pyrolysis temperature of 800 °C. Total organic matter ranged from 66.0 to 98.1%, total organic carbon ranged from 38.3 to 56.9%, and total nitrogen ranged from 0.4 to 1.9%. The highest values of phosphorus and calcium content (134.6 and 649.0 mg kg-1) were obtained from sugar cane at a pyrolysis temperature of 800 °C. The magnesium, sodium and sulfur content had ranges of 10.9-51.7, 1124-1703 and 3568-12,060 mg kg-1, respectively.


Subject(s)
Calcium , Pyrolysis , Temperature , Magnesium , Charcoal/chemistry , Carbon , Water , Nitrogen , Phosphorus , Sodium , Sulfur
4.
Sci Rep ; 13(1): 4606, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944764

ABSTRACT

Energy scarcity and conventional energy problems are the main reason of finding a renewable source of energy which is cheap and environmental friendly, therefore, biodiesel production is one of the most promising solutions of this problem. Also, Egyptian castor is one of the most important crops for oil production compared with other commonly used oil crops. The main aim of this study is to enhance the production of bio-oil from Egyptian castor seeds by using microwave and ultrasonic as pre-treatments. To achieve that, the effects of extraction screw speed (20, 40 and 60 rpm) and temperature (100, 150, 200 and 250 °C) on oil extraction yield and quality, extraction energy requirements and extraction time and were studied. Also, the effect of pretreatment conditions of microwave at three levels of power (Low, Med and High) and different times (1, 2 and 3 min) and pretreatment condition ultrasonic with different temperatures (40, 60 and 80 °C) and different times (15, 30 and 45 min) for castor seeds before extraction with the optimum condition of the screw press on oil extraction yield from castor seeds, extraction energy, extraction time and quality of the oil extracted. The results indicate that the optimum conditions oil extraction by screw press were 200 °C extraction temperature and 60 rpm screw speed. It could be seen that the extraction oil yield, extraction energy requirements and extraction time were 35.59%, 18.68 and 1.86 min, respectively. Microwave pretreatments had better on oil yield and energy required for extraction compared to ultrasonic pretreatments, where, microwave pretreatments recorded high oil yield and lower energy requirements compared to the ultrasonic pretreatments. Oil yield ranged from 32.67 to 37.41% compared to 13.29 to 39.83% in literature. The time required for extraction was ranged from 1.77 to 2.00 and 1.79 to 2.21 min for microwave and ultrasonic pretreatments, respectively. The pretreatment improved properties of the extracted oil.


Subject(s)
Ricinus communis , Ultrasonics , Microwaves , Egypt , Plant Oils , Seeds
5.
Sci Rep ; 11(1): 12754, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140544

ABSTRACT

The main aim of this paper was to investigate the possibility of growing basil under three soilless systems (aeroponic, hydroponic and peatmoss slab systems). A model was developed to predict the nutrients consumption by basil plants. Shoot and root height, fresh and dry mass of whole plant, nutrients uptake, and oil content were studied during the growth period (after 4 and 7 weeks from transplanting). The results indicated that the shoot lengths of basil plants were 71.67 ± 2.89, 65.67 ± 1.15 and 62.33 ± 2.31 cm at the end of growth period for aeroponic, hydroponic and peatmoss slabs, respectively. The highest value of root height of basil plants was 37.67 ± 6.66 cm for aeroponic system. The dry mass of shoot of basil plants ranged from 28.48 ± 0.91 to 44.77 ± 0.97 and 72.98 ± 0.83 to 117.93 ± 1.40 g plant-1 after 4 and 7 weeks from transplanting, respectively. The highest values of the N, P, K, Ca and Mg uptakes were 753.99 ± 5.65, 224.88 ± 3.05, 449.75 ± 4.59, 529.12 ± 6.63 and 112.44 ± 1.67 mg plant-1 at the end of experimental period, respectively. The basil oil content ranged from 1.129 (1.11%) to 2.520 (1.80%) and 2.664 (1.42%) to 6.318 (1.44%) g plant-1 after 4 and 7 weeks from transplanting, respectively at the same pervious order. The production costs of basil plant were 2.93, 5.27 and 6.24 EGP kg-1 of plant. The model results were in a reasonable agreement with the experimental ones.


Subject(s)
Agriculture/instrumentation , Ocimum basilicum/growth & development , Hydroponics , Ocimum , Ocimum basilicum/chemistry , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Oils/analysis , Plant Roots/growth & development , Soil
SELECTION OF CITATIONS
SEARCH DETAIL