Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31963738

ABSTRACT

Air pollution is associated with premature mortality and a wide spectrum of diseases. Traffic-related air pollution (TRAP) is one of the most concerning sources of air pollution for human exposure and health. Until TRAP levels can be significantly reduced on a global scale, there is a need for effective shorter-term strategies to prevent the adverse health effects of TRAP. A growing number of studies suggest that increasing antioxidant intake, through diet or supplementation, may reduce this burden of disease. In this paper, we conducted a non-systematic literature review to assess the available evidence on antioxidant-rich diets and antioxidant supplements as a strategy to mitigate adverse health effects of TRAP in human subjects. We identified 11 studies that fit our inclusion criteria; 3 of which investigated antioxidant-rich diets and 8 of which investigated antioxidant supplements. Overall, we found consistent evidence that dietary intake of antioxidants from adherence to the Mediterranean diet and increased fruit and vegetable consumption is effective in mitigating adverse health effects associated with TRAP. In contrast, antioxidant supplements, including fish oil, olive oil, and vitamin C and E supplements, presented conflicting evidence. Further research is needed to determine why antioxidant supplementation has limited efficacy and whether this relates to effective dose, supplement formulation, timing of administration, or population being studied. There is also a need to better ascertain if susceptible populations, such as children, the elderly, asthmatics and occupational workers consistently exposed to TRAP, should be recommended to increase their antioxidant intake to reduce their burden of disease. Policymakers should consider increasing populations' antioxidant intake, through antioxidant-rich diets, as a relatively cheap and easy preventive measure to lower the burden of disease associated with TRAP.


Subject(s)
Air Pollution/adverse effects , Antioxidants/pharmacology , Diet , Dietary Supplements , Food Analysis , Humans
2.
Curr Environ Health Rep ; 6(1): 22-37, 2019 03.
Article in English | MEDLINE | ID: mdl-30701411

ABSTRACT

PURPOSE OF REVIEW: By 2050, 70% of the global population will live in urban areas, exposing a greater number of people to specific city-related health risks that will only be exacerbated by climate change. Two prominent health risks are poor air quality and physical inactivity. We aim to review the literature and state the best practices for clean air and active transportation in urban areas. RECENT FINDINGS: Cities have been targeting reductions in air pollution and physical inactivity to improve population health. Oslo, Paris, and Madrid plan on banning cars from their city centers to mitigate climate change, reduce vehicle emissions, and increase walking and cycling. Urban streets are being redesigned to accommodate and integrate various modes of transportation to ensure individuals can become actively mobile and healthy. Investments in pedestrian, cycling, and public transport infrastructure and services can both improve air quality and support active transportation. Emerging technologies like electric and autonomous vehicles are being developed and may reduce air pollution but have limited impact on physical activity. Green spaces too can mitigate air pollution and encourage physical activity. Clean air and active transportation overlap considerably as they are both functions of mobility. The best practices of clean air and active transportation have produced impressive results, which are improved when enacted simultaneously in integrated policy packages. Further research is needed in middle- and low-income countries, using measurements from real-world interventions, tracing air pollution back to the sources responsible, and holistically addressing the entire spectrum of exposures and health outcomes related to transportation.


Subject(s)
Air Pollution/prevention & control , Climate Change , Exercise , Transportation/methods , Urban Population , Vehicle Emissions , Bicycling , Cities , Humans , Motor Vehicles/legislation & jurisprudence , Walking
SELECTION OF CITATIONS
SEARCH DETAIL