Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
ACS Nano ; 13(8): 8736-8748, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31329425

ABSTRACT

Limited understanding of the factors influencing the yield of carbon nanotubes (CNTs) relative to the number of catalyst particles remains an important barrier to their large-scale production with high quality, and to tailoring CNT properties for applications. This lack of understanding is evident in the frequent use of Edisonian approaches to give high-yield CNT growth, and in the sometimes-confusing influence of trace residues on the reactor walls. In order to create conditions wherein CNT yield is reproducible and to enable large-scale and reliable CNT synthesis, it is imperative to understand-fundamentally-how these common practices impact catalytic activity and thus CNT number density. Herein, we use ambient pressure-X-ray photoelectron spectroscopy (AP-XPS) to reveal the influence of carbon and hydrogen on the coupling between catalyst reduction and CNT nucleation, from an iron catalyst film. We observe a positive correlation between the degree of catalyst reduction and the density of vertically aligned CNTs (forests), verifying that effective catalyst reduction is critical to CNT nucleation and to the resulting CNT growth yield. We demonstrate that the extent of catalyst reduction is the reason for low CNT number density and for lack of self-organization, lift-off, and growth of CNT forests. We also show that hydrocarbon byproducts from consecutive growths can facilitate catalyst reduction and increase CNT number density significantly. These findings suggest that common practices used in the field-such as reactor preconditioning-aid in the reduction of the catalyst population, thus improving CNT number density and enabling the growth of dense forests. Our results also motivate future work using AP-XPS and complementary metrology tools to optimize CNT growth conditions according to the catalyst chemical state.

2.
Chem Mater ; 26(22): 6380-6392, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25673919

ABSTRACT

Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occur isothermally, i.e., at constant elevated temperature, on the Cu surface during exposure to borazine. A Cu lattice expansion during borazine exposure and B precipitation from Cu upon cooling highlight that B is incorporated into the Cu bulk, i.e., that growth is not just surface-mediated. On this basis we suggest that B is taken up in the Cu catalyst while N is not (by relative amounts), indicating element-specific feeding mechanisms including the bulk of the catalyst. We further show that oxygen intercalation readily occurs under as-grown h-BN during ambient air exposure, as is common in further processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i.e., occurs at the catalyst/h-BN interface and depends on the level of oxygen fed to this interface. In turn, however, deliberate feeding of oxygen during h-BN deposition can positively affect control over film morphology. We discuss the implications of these observations in the context of corrosion protection and relate them to challenges in process integration and heterostructure CVD.

3.
Nano Lett ; 13(10): 4624-31, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24024736

ABSTRACT

Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 µm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems.


Subject(s)
Carbon/chemistry , Graphite/chemistry , Nanostructures/chemistry , Aluminum Oxide/chemistry , Catalysis , Crystallization , Diffusion , Nickel/chemistry , Spectrum Analysis, Raman , Surface Properties
4.
Nano Lett ; 13(10): 4769-78, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24041311

ABSTRACT

Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.


Subject(s)
Copper/chemistry , Graphite/chemistry , Nanostructures/chemistry , Carbon/chemistry , Crystallization , Oxygen/chemistry , Photoelectron Spectroscopy , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL