Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Clin Invest ; 129(7): 2964-2979, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31205032

ABSTRACT

Cancer therapy is a double-edged sword, as surgery and chemotherapy can induce an inflammatory/immunosuppressive injury response that promotes dormancy escape and tumor recurrence. We hypothesized that these events could be altered by early blockade of the inflammatory cascade and/or by accelerating the resolution of inflammation. Preoperative, but not postoperative, administration of the nonsteroidal antiinflammatory drug ketorolac and/or resolvins, a family of specialized proresolving autacoid mediators, eliminated micrometastases in multiple tumor-resection models, resulting in long-term survival. Ketorolac unleashed anticancer T cell immunity that was augmented by immune checkpoint blockade, negated by adjuvant chemotherapy, and dependent on inhibition of the COX-1/thromboxane A2 (TXA2) pathway. Preoperative stimulation of inflammation resolution via resolvins (RvD2, RvD3, and RvD4) inhibited metastases and induced T cell responses. Ketorolac and resolvins exhibited synergistic antitumor activity and prevented surgery- or chemotherapy-induced dormancy escape. Thus, simultaneously blocking the ensuing proinflammatory response and activating endogenous resolution programs before surgery may eliminate micrometastases and reduce tumor recurrence.


Subject(s)
Docosahexaenoic Acids/pharmacology , Immunity, Cellular/drug effects , Ketorolac/pharmacology , Neoplasm Recurrence, Local/prevention & control , Neoplasms, Experimental , Preoperative Care , T-Lymphocytes/metabolism , Animals , Male , Mice , Mice, Knockout , Neoplasm Metastasis , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , T-Lymphocytes/pathology
2.
Proc Natl Acad Sci U S A ; 110(16): 6530-5, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23553837

ABSTRACT

Epidemiological and preclinical evidence supports that omega-3 dietary fatty acids (fish oil) reduce the risks of macular degeneration and cancers, but the mechanisms by which these omega-3 lipids inhibit angiogenesis and tumorigenesis are poorly understood. Here we show that epoxydocosapentaenoic acids (EDPs), which are lipid mediators produced by cytochrome P450 epoxygenases from omega-3 fatty acid docosahexaenoic acid, inhibit VEGF- and fibroblast growth factor 2-induced angiogenesis in vivo, and suppress endothelial cell migration and protease production in vitro via a VEGF receptor 2-dependent mechanism. When EDPs (0.05 mg · kg(-1) · d(-1)) are coadministered with a low-dose soluble epoxide hydrolase inhibitor, EDPs are stabilized in circulation, causing ~70% inhibition of primary tumor growth and metastasis. Contrary to the effects of EDPs, the corresponding metabolites derived from omega-6 arachidonic acid, epoxyeicosatrienoic acids, increase angiogenesis and tumor progression. These results designate epoxyeicosatrienoic acids and EDPs as unique endogenous mediators of an angiogenic switch to regulate tumorigenesis and implicate a unique mechanistic linkage between omega-3 and omega-6 fatty acids and cancers.


Subject(s)
Carcinoma, Lewis Lung/prevention & control , Cell Transformation, Neoplastic/drug effects , Docosahexaenoic Acids/metabolism , Epoxy Compounds/pharmacology , Fatty Acids, Omega-3/chemistry , Fatty Acids, Unsaturated/pharmacology , Neoplasm Metastasis/prevention & control , Neovascularization, Pathologic/prevention & control , Animals , Cell Movement/drug effects , Dose-Response Relationship, Drug , Epoxide Hydrolases/antagonists & inhibitors , Epoxy Compounds/metabolism , Fatty Acids, Unsaturated/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL