Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem Toxicol ; 161: 112847, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35143918

ABSTRACT

Although accumulation of amyloid ß (Aß) plaque is a major hallmark of Alzheimer's disease (AD), various pathologies have been suggested therapeutic targets. Therefore, therapies-targeting multiple pathologies would be required for effective managements of AD. Accordingly, natural products, which has multiple active ingredients, have been receiving a lot of attention. In this study, we tested whether standardized ethanol extract of leaves of Perilla frutescens var. acuta (L.) Britt. (Lamiaceae) (ELPF) could modulate various pathologies in AD using 5XFAD mice. ELPF blocked Aß aggregation and disassembled pre-formed Aß aggregates. ELPF blocked Aß aggregates-induced LTP impairment and ELPF-disassembled Aß aggregates failed to impair hippocampal LTP. Systemic administration of ELPF blocked Aß aggregates-induced memory impairment in a passive avoidance test. ELPF-disassembled Aß aggregates failed to impair passive avoidance memory. Prolonged administration of ELPF ameliorated memory impairments in 5XFAD mice. In the hippocampus of 5XFAD mice, ELPF administration significantly reduced Aß deposits and neuroinflammation. These results demonstrate that ELPF could be a promising therapeutic candidate for AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Perilla frutescens/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Female , Hippocampus/pathology , Male , Mice, Transgenic , Plant Extracts/chemistry
2.
Nutrients ; 12(4)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260414

ABSTRACT

New antibacterial treatments against Helicobacter pylori are needed as H. pylori is acquiring antibiotic resistance. ß-caryophyllene is a natural bicyclic sesquiterpene, with anti-inflammatory and antimicrobial effects. This study investigates the effects of H-002119-00-001 from ß-caryophyllene on the eradication of H. pylori in a mouse model, and its effects on the inflammation of the gastric mucosa. To evaluate the anti-H.pylori efficacy of ß-caryophyllene, a total of 160 mice were divided into eight groups (n = 10 each) and were administered different treatments for 2 and 4 weeks. H. pylori eradication was assessed using a Campylobacter-like organism (CLO) test and H. pylori qPCR of the gastric mucosa. The levels of inflammation of gastric mucosa were assessed using histology and immunostaining. H-002119-00-001 decreased bacterial burden in vitro. When H-002119-00-001 was administered to mice once daily for 2 weeks, cure rates shown by the CLO test were 40.0%, 60.0%, and 70.0% in groups 6, 7, and 8, respectively. H. pylori levels in gastric mucosa decreased dose-dependently after H-002119-00-001 treatment. H-002119-00-001 also reduced levels of inflammation in gastric mucosa. H-002119-00-001 improved inflammation and decreased bacterial burden in H. pylori-infected mouse models. H-002119-00-001 is a promising and effective therapeutic agent for the treatment of H. pylori infection.


Subject(s)
Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Plant Extracts/chemistry , Polycyclic Sesquiterpenes/therapeutic use , Syzygium/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Helicobacter Infections/microbiology , Male , Mice , Mice, Inbred C57BL , Polycyclic Sesquiterpenes/chemistry
3.
J Bacteriol ; 194(24): 7003-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23209247

ABSTRACT

A bacterium, designated M2-6, was isolated from Korean ginseng, Panax ginseng C. A. Meyer, roots after high-hydrostatic-pressure processing. On the basis of 16 rRNA gene phylogeny, the isolate was presumptively identified as a Bacillus sp. Here we report the draft genome sequence of Bacillus sp. strain M2-6 (= KACC 16563).


Subject(s)
Bacillus/genetics , Genome, Bacterial , Panax/microbiology , Plant Roots/microbiology , Bacillus/classification , Bacillus/isolation & purification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Hydrostatic Pressure , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
4.
J Sci Food Agric ; 92(4): 870-6, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-21953622

ABSTRACT

BACKGROUND: The purpose of this study was to produce triacylglycerols (TAGs) enriched in pinolenic acid (PLA) at the sn-2 position using the principle of acyl migration, from the pine nut oil containing PLA esterified exclusively at the sn-3 position. RESULTS: Two types of lipase-catalysed reactions, i.e. redistribution and reesterification of fatty acids, were successively performed using seven commercially available lipases as biocatalysts. Of the lipases tested, Novozym 435 and Lipozyme TL IM were effective biocatalysts for positioning PLA at the sn-2 location. These biocatalysts were selected for further evaluation of the effects of reaction parameters, such as temperature and water content on the migration of PLA residues to the sn-2 position and TAG content. For both lipases, a significant decrease in TAG content was observed after the lipase-catalysed redistribution of fatty acids for both lipases. The reduced TAG content could be enhanced up to approx. 92%, through lipase-catalysed re-esterification of the hydrolysed fatty acids under vacuum. CONCLUSION: TAG enriched in PLA at the sn-2 position was synthesised from pine nut oil via lipase-catalysed redistribution and re-esterification of fatty acid residues using Lipozyme TL IM and Novozym 435 as biocatalysts.


Subject(s)
Fungal Proteins/metabolism , Linolenic Acids/metabolism , Lipase/metabolism , Pinus/chemistry , Plant Oils/chemistry , Triglycerides/metabolism , Appetite Depressants/analysis , Appetite Depressants/chemistry , Appetite Depressants/metabolism , Bacterial Proteins/metabolism , Dietary Supplements/analysis , Enzymes, Immobilized/metabolism , Esterification , Fatty Acids/analysis , Hot Temperature , Hypolipidemic Agents/analysis , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/metabolism , Isomerism , Linolenic Acids/analysis , Nuts/chemistry , Plant Oils/metabolism , Seeds/chemistry , Triglycerides/analysis , Triglycerides/chemistry , Vacuum
5.
J Sci Food Agric ; 91(8): 1466-73, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21384379

ABSTRACT

BACKGROUND: To determine biomaterial components, the components must first be transferred into solution; thus extraction is the first step in biomaterial analysis. High hydrostatic pressure technology was used for ginsenoside extraction from ginseng roots. In the extraction of fresh and red ginseng, high hydrostatic pressure extraction (HHPE) was found to be more effective than heat extraction (HE). RESULTS: In fresh ginseng extraction under HHPE, total ginsenosides (1602.2 µg mL⁻¹) and ginsenoside metabolite (132.6 µg mL⁻¹) levels were slightly higher than those under HE (1259.0 and 78.7 µg mL⁻¹), respectively. In red ginseng, similar results indicated total ginsenoside and ginsenoside metabolite amounts according to the extraction methods. Most volatile compounds by HHPE were higher than by HE treatment. HHPE of red ginseng was conducted under four pressures: 0.1 MPa (1 atm), 30, 50, and 80 MPa. Total sugar, uronic acid, and polyphenol amounts increased until 30 MPa of pressure and then showed decreasing tendencies. Total ginsenoside and ginsenoside metabolite contents linearly increased with increasing pressure, and a maximum was reached at 80 MPa for the metabolites. CONCLUSION: HHPE used for red ginseng processing contributes to enhanced extraction efficiencies of functional materials such as ginsenosides through cell structure modification.


Subject(s)
Ginsenosides/isolation & purification , Hot Temperature , Hydrostatic Pressure , Panax/chemistry , Plant Extracts/chemistry , Carbohydrates/isolation & purification , Plant Roots , Polyphenols/isolation & purification , Uronic Acids/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL