Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Skin Pharmacol Physiol ; 31(4): 212-219, 2018.
Article in English | MEDLINE | ID: mdl-29791915

ABSTRACT

We investigated the potential effects of Costaria costata (CC) on atopic dermatitis (AD) development in chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. CC is a brown alga distributed across the seas of Korea, China, and Japan. A total of 40 mice were randomly assigned to 5 groups with 8 mice per group: untreated Balb/c mice, AD control (0.1% w/v DNCB-treated NC/Nga mice), positive control (i.e., DNCB-treated NC/Nga mice fed a dietary supplement of 66.6 mg/kg of body weight [b.w.] of CJLP133), DNCB-treated NC/Nga mice fed a dietary supplement of 100 mg/kg b.w. of CCE10 (CCE10 100), and DNCB-treated mice fed a dietary supplement of 300 mg/kg b.w. of CCE10 (CCE10 300) groups. The CCE10 100 and CCE10 300 treatment groups suppressed AD development including clinical and histopathological changes and a reduction in skin hydration induced by DNCB. In addition, Th2 cytokine production in primary splenocytes, serum IgE and histamine production, and mast cell infiltration into the skin were suppressed in the CCE10 300 mice compared to the CCE10 100 mice. Our finding demonstrated an inhibitory effect of CCE10 in AD development by means of improving the Th1/Th2 cytokine balance and anti-inflammatory effect in an in vivo model.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatitis, Atopic/drug therapy , Dermatologic Agents/pharmacology , Phaeophyceae/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Cytokines/immunology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Dermatologic Agents/administration & dosage , Dermatologic Agents/isolation & purification , Dietary Supplements , Dinitrochlorobenzene/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Immunoglobulin E/blood , Male , Mast Cells/metabolism , Mice , Mice, Inbred BALB C , Spleen/cytology , Th1 Cells/immunology , Th2 Cells/immunology
2.
J Med Food ; 20(12): 1152-1159, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29243967

ABSTRACT

Porphyra tenera, also known as nori, is a red algal species of seaweed. It is cultivated in Asia for culinary purposes. We report that P. tenera extract (PTE) enhances the immune response in mouse macrophages. We found that P. tenera extract regulates the NF-κB IκB kinase (IKK) signaling pathway, and we assessed the expression and translocation of p65, a subunit of NF-κB, in RAW264.7 mouse macrophage cells after treatment with PTE. We also investigated the effects of 10% ethanol PTE (PTE10) in RAW264.7 cells. The production of IL-10, IL-6, TNF-α, and IFN-γ was induced by PTE treatment of the macrophages, and PTE also enhanced p-IκB and p-AKT. PTE10 showed no cytotoxicity at 10-20 µg/mL in RAW264.7 cells. PTE10, in fact, increased cell viability at 24 h, stimulated macrophage cells, and induced the phosphorylation of Akt. Akt stimulates IKK activity through the phosphorylation of IKKα and enhances immune activity through the activation of NF-κB. In this study, NF-κB activation was induced by increasing p-NF-κB and p-IKK. A subunit of NF-κB, p65, was located in the nucleus and increased the expression of various cytokines. PTE thus enhanced the immune response through IκB-α immunostimulation signaling in RAW264.7 cells. PTE10 has potential therefore for development of future treatments requiring immune system stimulation.


Subject(s)
Macrophages/drug effects , Macrophages/immunology , NF-kappa B/immunology , Plant Extracts/pharmacology , Porphyra/chemistry , Seaweed/chemistry , Animals , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Mice , NF-kappa B/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL