Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239855

ABSTRACT

Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.


Subject(s)
Mouth Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Cell Proliferation , Mouth Neoplasms/drug therapy , Cell Line, Tumor
2.
J Cancer Prev ; 27(4): 239-246, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36713940

ABSTRACT

Since ancient times, honey has been used in traditional medicine owing to its pharmacological effects. It possesses anticancer properties. However, the therapeutic implications of Sangju honey in cancer remains unknown. Therefore, we aimed to demonstrate the potential anticancer effects of Sangju honey on human oral squamous cell carcinoma (OSCC), particularly focusing on epithelial-mesenchymal transition (EMT) and apoptotic and mitogen-activated protein kinase (MAPK) signaling pathways. Ca9-22 and YD-10B human OSCC cells were treated with 0.25% or 0.5% Sangju honey, and the cell viability was examined using the Cell Counting Kit-8 assay. Cell morphology studies were conducted to observe morphological changes, and the wound-healing assay was performed to evaluate the proliferation of honey-treated OSCC cells. Western blot analysis was conducted to investigate protein expression related to EMT and apoptotic and MAPK signaling pathways. Sangju honey reduced cell viability, induced morphological changes, and significantly suppressed the proliferation and migration of Ca9-22 and YD-10B cells. The expression of E-cadherin and N-cadherin was increased and decreased, respectively, in both OSCC cell lines. Moreover, Sangju honey stimulated apoptosis by increasing the expression of p21, p53, cleaved caspase 3, and caspase 9. Furthermore, it downregulated the expression of phospho (p)-extracellular signal-regulated kinases 1 and 2, p-c-Jun amino-terminal kinase, and p-p38 in Ca9-22 and YD-10B cells. Sangju honey inhibits Ca9-22 and YD-10B cell proliferation by regulating EMT, inducing apoptosis, and suppressing the MAPK signaling pathway. Thus, it is a potential anticancer agent for human OSCC.

3.
Oncol Rep ; 45(4)2021 04.
Article in English | MEDLINE | ID: mdl-33649861

ABSTRACT

Ginsenoside Rh2 (G­Rh2) is a natural bioactive product derived from Panax ginseng Meyer (P. ginseng). G­Rh2 exhibits anticancer activity in various human cancer cell lines both in vitro and in vivo by modulating several signaling pathways, such as those of PDZ­binding kinase/T­LAK cell­originated protein kinase, phosphatidylinositol 3­kinase, protein kinase B, mammalian target of rapamycin, epidermal growth factor receptor, p53, and reactive oxygen species. Moreover, G­Rh2 could effectively reverse drug resistance and enhance therapeutic effects in cancer therapy. This review summarizes the chemical properties, in vitro and in vivo anticancer activity, and underlying molecular mechanisms of G­Rh2 to facilitate cancer chemoprevention studies.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Ginsenosides/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Ginsenosides/therapeutic use , Humans , Neoplasms/pathology , Panax/chemistry , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL