Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytother Res ; 33(5): 1384-1393, 2019 May.
Article in English | MEDLINE | ID: mdl-30887612

ABSTRACT

Evidence suggests that auranofin (AF) exhibits anticancer activity by inhibiting thioredoxin reductase (TrxR). Here, in this study, we have investigated the synergistic effects of AF and morin and their mechanism for the anticancer effects focusing on apoptosis in Hep3B human hepatocellular carcinoma cells. We assessed the anticancer activities by annexin V/PI double staining, caspase, and TrxR activity assay. Morin enhances the inhibitory effects on TrxR activity of AF as well as reducing cell viability. Annexin V/PI double staining revealed that morin/AF cotreatment induced apoptotic cell death. Morin enhances AF-induced mitochondrial membrane potential (ΔΨm) loss and cytochrome c release. Further, morin/AF cotreatment upregulated death receptor DR4/DR5, modulated Bcl-2 family members (upregulation of Bax and downregulation of Bcl-2), and activated caspase-3, -8, and -9. Morin also enhances AF-induced reactive oxygen species (ROS) generation. The anticancer effects results from caspase-dependent apoptosis, which was triggered via extrinsic pathway by upregulating TRAIL receptors (DR4/DR5) and enhanced via intrinsic pathway by modulating Bcl-2 and inhibitor of apoptosis protein family members. These are related to ROS generation. In conclusion, this study provides evidence that morin can enhance the anticancer activity of AF in Hep3B human hepatocellular carcinoma cells, indicating that its combination could be an alternative treatment strategy for the hepatocellular carcinoma.


Subject(s)
Auranofin/pharmacology , Carcinoma, Hepatocellular/drug therapy , Flavonoids/pharmacology , Liver Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Caspases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cytochromes c/metabolism , Down-Regulation/drug effects , Humans , Inhibitor of Apoptosis Proteins/metabolism , Liver Neoplasms/pathology , Male , Membrane Potential, Mitochondrial/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
2.
Biosci Trends ; 12(3): 257-265, 2018.
Article in English | MEDLINE | ID: mdl-30012915

ABSTRACT

Sargassum serratifolium C. Agardh is a marine brown alga that has long been used as an ingredient for food and medicine by many people living along Asian coastlines. Recently, various beneficial effects of extracts or compounds isolated from S. serratifolium have been reported, but their efficacies against bone destruction are unclear. Therefore, in this study, we investigated the inhibitory property of an ethanol extract of S. serratifolium (EESS) on osteoclast differentiation by focusing on the receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis model using RAW 264.7 macrophages. Our results demonstrated that EESS reduced RANKL-induced osteoclast differentiation in RAW 264.7 cells, by inhibiting tartrate-resistant acid phosphatase (TRAP) activity and destroying the F-actin ring formation. EESS also attenuated RANKL-induced expressions of key osteoclast-specific genes, such as nuclear factor of activated T cells cytoplasmic 1 (NFATC1), TRAP, cathepsin K and matrix metalloproteinase-9. These effects were mediated by impaired nuclear translocation of nuclear factor (NF)-κB and suppression of IκB-α degradation. In addition, EESS effectively inhibited the production of reactive oxygen species (ROS) by RANKL, which was associated with enhanced expression of nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Overall, our findings provide evidence that EESS suppresses RANKL-induced osteoclastogenesis and oxidative stress through suppression of NF-κB and activation of Nrf2/HO-1 signaling pathway, indicating that S. serratifolium has a potential application the prevention and treatment of osteoclastogenic bone disease.


Subject(s)
Cell Differentiation/drug effects , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Osteoclasts/pathology , Oxidative Stress/drug effects , RANK Ligand/pharmacology , Sargassum/chemistry , Actins/metabolism , Animals , Cell Survival/drug effects , Ethanol , Gene Expression Regulation/drug effects , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Plant Extracts/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction
3.
Biol Pharm Bull ; 41(5): 713-721, 2018.
Article in English | MEDLINE | ID: mdl-29709909

ABSTRACT

The fruit of Citrus unshiu MARKOVICH used for various purposes in traditional medicine has various pharmacological properties including antioxidant, anti-inflammatory, and antibacterial effects. Recently, the possibility of anti-cancer activity of the extracts or components of this fruit has been reported; however, the exact mechanism has not yet been fully understood. In this study, we evaluated the anti-proliferative effect of water extract of C. unshiu peel (WECU) on human breast cancer MCF-7 cells and investigated the underlying mechanism. Our results showed that reduction of MCF-7 cell survival by WECU was associated with the induction of apoptosis. WECU-induced apoptotic cell death was related to the activation of caspase-8 and -9, representative initiate caspases of extrinsic and intrinsic apoptosis pathways, respectively, and increase in the Bax : Bcl-2 ratio accompanied by cleavage of poly(ADP-ribose) polymerase (PARP). WECU also increased the mitochondrial dysfunction and cytosolic release of cytochrome c. In addition, AMP-activated protein kinase (AMPK) and its downstream target molecule, acetyl-CoA carboxylase, were activated in a concentration-dependent manner in WECU-treated cells. In contrast, compound C, an AMPK inhibitor, significantly inhibited WECU-induced apoptosis, while inhibiting increased expression of Bax and decreased expression of Bcl-2 by WECU and inhibition of WECU-induced PARP degradation. Furthermore, WECU provoked the production of reactive oxygen species (ROS); however, the activation of AMKP and apoptosis by WECU were prevented, when the ROS production was blocked by antioxidant N-acetyl cysteine. Therefore, our data indicate that WECU suppresses MCF-7 cell proliferation by activating the intrinsic and extrinsic apoptosis pathways through ROS-dependent AMPK pathway activation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/metabolism , Citrus , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/drug effects , Fruit , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects
4.
Nutr Res Pract ; 12(2): 129-134, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29629029

ABSTRACT

BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

5.
Biosci Trends ; 11(5): 565-573, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29070760

ABSTRACT

Citrus unshiu peel has been used to prevent and treat various diseases in traditional East-Asian medicine including in Korea. Extracts of C. unshiu peel are known to have various pharmacological effects including antioxidant, anti-inflammatory, and antibacterial properties. Although the possibility of their anti-cancer activity has recently been reported, the exact mechanisms in human cancer cells have not been sufficiently studied. In this study, the inhibitory effect of ethanol extract of C. unshiu peel (EECU) on the growth of human bladder cancer T24 cells was evaluated and the underlying mechanism was investigated. The present study demonstrated that the suppression of T24 cell viability by EECU is associated with apoptosis induction. EECU-induced apoptosis was found to correlate with an activation of caspase-8, -9, and -3 in concomitance with a decrease in the expression of the inhibitor of apoptosis family of proteins and an increase in the Bax:Bcl-2 ratio accompanied by the proteolytic degradation of poly(ADP-ribose) polymerase. EECU also increased the generation of reactive oxygen species (ROS), collapse of mitochondrial membrane potential, and cytochrome c release to the cytosol, along with a truncation of Bid. In addition, EECU inactivated phosphatidylinositol 3-kinase (PI3K) as well as Akt, a downstream molecular target of PI3K, and LY294002, a specific PI3K inhibitor significantly enhanced EECU-induced apoptosis and cell viability reduction. However, N-acetyl cysteine, a general ROS scavenger, completely reversed the EECU-induced dephosphorylation of PI3K and Akt, as well as cell apoptosis. Taken together, these findings suggest that EECU inhibits T24 cell proliferation by activating intrinsic and extrinsic apoptosis pathways through a ROS-mediated inactivation of the PI3K/Akt pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Citrus/chemistry , Elafin/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/drug effects , Ethanol/chemistry , Humans , Plant Extracts/isolation & purification , Signal Transduction , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
6.
Mol Med Rep ; 16(4): 3841-3848, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29067461

ABSTRACT

Mori folium, the leaf of Morus alba L. (Moraceae), has been widely used in traditional medicine for the treatment of various diseases. It has been recently reported that Mori folium possesses potential chondroprotective effects in interleukin (IL)­1ß­stimulated human chondrocytes; however, its protective and therapeutic potential against osteoarthritis (OA) in an animal model remains unclear. In this study, as part of an ongoing screening program to evaluate the anti­osteoarthritic potential of Mori folium, the protective effects of a water extract of Mori folium (MF) on cartilage degradation and inflammatory responses in a monosodium iodoacetate (MIA)­induced OA rat model were evaluated. The results demonstrated that administration of MF had a tendency to attenuate the damage to articular cartilage induced by MIA, as determined by knee joint swelling and the histological grade of OA. The elevated levels of matrix metalloproteinases­13 and two bio­markers for the diagnosis and progression of OA, such as the cartilage oligomeric matrix protein and C­telopeptide of type II collagen, were markedly ameliorated by MF administration in MIA­induced OA rats. In addition, MF significantly suppressed the production of pro­inflammatory cytokines, including IL­1ß, IL­6 and tumor necrosis factor­α. MF also effectively inhibited the expression of inducible nitric oxide (NO) synthase and cyclooxygenase­2, thus inhibiting the release of NO and prostaglandin E2. Although further work is required to fully understand the critical role and clinical usefulness, these findings indicate that MF may be a potential therapeutic option for the treatment of OA.


Subject(s)
Cartilage, Articular/drug effects , Cytokines/metabolism , Morus/chemistry , Osteoarthritis/pathology , Plant Extracts/pharmacology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Celecoxib/pharmacology , Celecoxib/therapeutic use , Cytokines/analysis , Dinoprostone/blood , Disease Models, Animal , Down-Regulation/drug effects , Interleukin-1beta/blood , Interleukin-6/blood , Iodoacetates/toxicity , Knee Joint/drug effects , Knee Joint/metabolism , Knee Joint/pathology , Male , Matrix Metalloproteinase 13/metabolism , Morus/metabolism , Nitric Oxide/blood , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Plant Leaves/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL