Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nutrients ; 14(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296933

ABSTRACT

Although the red pepper and its seeds have been studied for metabolic diseases, the effects and potential mechanisms of red pepper seed extract (RPS) on hepatic lipid accumulation are not yet completely understood. This study aimed to evaluate the inhibitory effect of RPS on hepatic lipid accumulation via autophagy. C57BL/6 mice were fed a high-fat diet (HFD) or a HFD supplemented with RPS. RPS treatment inhibited hepatic lipid accumulation by suppressing lipogenesis, inducing hepatic autophagic flux, and activating AMPK in HFD-fed mice. To investigate the effect of RPS on an oleic acid (OA)-induced hepatic steatosis cell model, HepG2 cells were incubated in a high-glucose medium and OA, followed by RPS treatment. RPS treatment decreased OA-induced lipid accumulation and reduced the expression of lipogenesis-associated proteins. Autophagic flux dramatically increased in the RPS-treated group. RPS phosphorylated AMPK in a dose-dependent manner, thereby dephosphorylated mTOR. Autophagy inhibition with 3-methyladenine (3-MA) antagonized RPS-induced suppression of lipogenesis-related protein expressions. Moreover, the knockdown of endogenous AMPK also antagonized the RPS-induced regulation of lipid accumulation and autophagy. Our findings provide new insights into the beneficial effects of RPS on hepatic lipid accumulation through the AMPK-dependent autophagy-mediated downregulation of lipogenesis.


Subject(s)
Capsicum , Fatty Liver , Non-alcoholic Fatty Liver Disease , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Lipid Metabolism , Oleic Acid/pharmacology , Mice, Inbred C57BL , Liver/metabolism , Autophagy , Fatty Liver/metabolism , Diet, High-Fat/adverse effects , TOR Serine-Threonine Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Glucose/metabolism , Seeds/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
2.
Nutrients ; 12(10)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080824

ABSTRACT

The rational regulation of programmed cell death by means of autophagy and apoptosis has been considered a potential treatment strategy for cancer. We demonstrated the inhibitory effect of St. John's Wort (SJW) on growth in the triple-negative breast cancer (TNBC) cell line and xenografted mice and its target mechanism concerning autophagic and apoptotic cell death. SJW ethanol extract (SJWE) inhibited proliferation in a dose-dependent manner. SJWE treatment dramatically increased autophagy flux and apoptosis compared with the control. The autophagy inhibitor, 3-methyladenine (3-MA), reversed the SJWE-induced inhibition of cell proliferation and regulation of autophagy and apoptosis, indicating that SJWE induced apoptosis through prodeath autophagy. Furthermore, SJWE inhibited tumor growth and induced autophagy and apoptosis in the tumor of MDA-MB-231 xenografted athymic nude mice. Our results indicate that SJWE might have great potential as a new anticancer therapy for triple-negative breast cancer by inducing prodeath autophagy and apoptosis.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Autophagy/drug effects , Hypericum/chemistry , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Dose-Response Relationship, Drug , Mice, Nude , Neoplasm Transplantation , Plant Extracts/isolation & purification , Tumor Cells, Cultured
3.
Phytother Res ; 33(10): 2765-2774, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31385371

ABSTRACT

The purpose of this study was to evaluate the pancreatic beta cell protective and glucose uptake enhancing effect of the water extract of Tinospora cordifolia stem (TCSE) by using rat insulinoma (RIN)-m5F cells and 3 T3-L1 adipocytes. RIN-m5F cells were stimulated with interleukin-1ß and interferon-γ, and the effect of TCSE on insulin secretion and cytokine-induced toxicity was measured by ELISA and MTT assay, respectively. The glucose uptake and protein expression were measured by fluorometry and western blotting. Antidiabetic effect of TCSE was measured using streptozotocin-induced diabetic rats. TCSE dose dependently increased cell viability and insulin secretion in RIN-m5F cells. In addition, TCSE increased both the glucose uptake and glucose transporter 4 translocation in 3 T3-L1 adipocytes via PI3K pathway. Finally, TCSE significantly lowered blood glucose and diet intake and increased body weight in streptozotocin-induced diabetic rats. The level of serum insulin and hepatic glycogen was increased, whereas the level of serum triglyceride, total cholesterol, dipeptidyl peptidase-4, and thiobarbituric acid reactive substances was decreased in TCSE-administered rats. TCSE also increased glucose transporter 4 protein expression in the adipose tissue and liver of TCSE-fed diabetic rats. Our results suggested that TCSE preserved RIN-m5F cells from cytokine-induced toxicity and enhanced glucose uptake in 3 T3-L1 adipocytes, which may regulate glucose metabolism in diabetic rats.


Subject(s)
Adipocytes/drug effects , Diabetes Mellitus, Experimental/drug therapy , Glucose/metabolism , Insulin-Secreting Cells/drug effects , Plant Extracts/pharmacology , Tinospora , Adipocytes/metabolism , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Male , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Streptozocin
4.
Int J Mol Sci ; 19(4)2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29570671

ABSTRACT

St. John's Wort (SJW) has been used as an estrogen agonist in the systems affected by menopause. Also, hypericin, a bioactive compound of SJW, has been used as a photosensitizer in photodynamic therapy. In the present study, we investigate the anti-proliferative and pro-apoptotic effects of SJW to demonstrate the chemo-preventive effect in human breast cancer cells. MCF-7 cells were cultured with DMSO or various concentrations of SJW ethanol extract (SJWE). Cell viability, proliferation, apoptosis, the expression of proteins involved in cell growth and apoptosis, and caspase-3/7 activity were examined. SJWE dose-dependently suppressed cell growth and induced apoptosis of MCF-7 cells. Mechanistically, SJWE enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and decreased the expression of p-mammalian target of rapamycin (p-mTOR) and p-eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). Also, SJWE inhibited the phosphorylation of protein kinase B (Akt) and showed increases in the expression of pro-apoptotic proteins Bax and Bad with decreases in the expression of anti-apoptotic proteins including B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), and p-Bcl-2-associated death promoter (p-Bad). SJWE at 50 µg/mL showed markedly enhanced caspase-7 activation. Taken together, our results provide evidence that SJWE shows anti-proliferative and pro-apoptotic effects via inhibition of AMPK/mTOR and activation of a mitochondrial pathway. Therefore, SJWE can be used as a chemo-preventive agent without photo-activation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Anthracenes , Cell Line, Tumor , Humans , Hypericum/chemistry , MCF-7 Cells , Perylene/analogs & derivatives , Perylene/pharmacology , Signal Transduction/drug effects
5.
Am J Chin Med ; 46(1): 107-118, 2018.
Article in English | MEDLINE | ID: mdl-29316805

ABSTRACT

Obesity is the main risk factor for metabolic syndromes and there has been an upsurge in demand for effective therapeutic strategies. This study investigated the effect of red pepper seed water extract (RPS) on the process of differentiation in 3T3-L1 adipocytes. RPS treatment significantly suppressed cellular lipid accumulation and reduced the expression of adipocytes-associated proteins, peroxisome proliferator-activated receptor-[Formula: see text] (PPAR-[Formula: see text]), CCAAT/enhancer-binding proteins [Formula: see text] (C/EBP [Formula: see text]), sterol regulatory element binding protein-1c (SREBP-1c), as well as fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4). The inhibitory effect of RPS on differentiation was mainly through the modulation of the C/EBP [Formula: see text] and C/EBP [Formula: see text] expression at the early phase of differentiation. Moreover, at the early phase of differentiation, RPS markedly increased the phosphorylation of AMP-activated protein kinase (AMPK). Such enhancing effect of RPS was abolished in the presence of compound C. Our results suggest that activation of AMPK at early stage of adipogenesis is involved in the anti-adipogenesis effect of RPS.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/cytology , Adipogenesis/genetics , Capsicum/chemistry , Cell Differentiation/drug effects , Plant Extracts/pharmacology , 3T3-L1 Cells , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/genetics , Fatty Acid-Binding Proteins/metabolism , Gene Expression/drug effects , Lipid Metabolism/drug effects , Mice , PPAR gamma/metabolism , Phosphorylation/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Water
6.
Am J Chin Med ; 43(4): 681-94, 2015.
Article in English | MEDLINE | ID: mdl-26133751

ABSTRACT

The present study is to evaluate the anti-obesity effects of Eriobotrya japonica (EJ), Nelumbo nucifera (NN), and their mixture (MIX, 1:1 ratio) in 3T3-L1 adipocytes and high-fat diet-induced obese mice. The treatment of EJ, NN, and MIX in 3T3-L1 adipocytes effectively inhibited lipid accumulation, significantly decreased expression of peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element binding protein (SREBP1c), and adipocyte lipid-binding protein (aP2), and significantly increased phosphorylation of AMP-activated protein kinase (AMPK). Moreover, oral treatment of MIX showed stronger effects than individual treatment. C57BL/6J mice (6 week old) were divided into two groups; low fat diet (LFD) containing 10% calories from fat and high fat diet (HFD) containing 60% calories from fat. The HFD groups were further divided into five subgroups; treated with distilled water (HFD), treated with 400 mg/kg EJ (EJ400), treated with 400 mg/kg NN (NN400), treated with 200 mg/kg MIX (MIX200), and treated with 400 mg/kg MIX (MIX400) during 13 weeks. In our results, the administration of EJ, NN, and MIX significantly decreased body weight (BW), fat weight, liver weight, hepatic triglyceride (TG) and total cholesterol (TC), lipid droplets in the liver, food efficacy ratio, and the plasma TG, TC, glucose, insulin, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in a dose-dependent manner, and MIX treatment showed stronger effect than their individual treatments. Similarly, MIX treatment decreased the expression of PPARγ, SREBP-1c, FAS, and ACC more strongly in the adipose tissue than single treatments. In conclusion, the MIX of EJ and NN extract may strongly regulate BW gain than EJ or NN alone, and its anti-obesity effect is associated with the control of lipid metabolism, including adipogenesis and lipogenesis.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Anti-Obesity Agents , Diet, High-Fat/adverse effects , Eriobotrya/chemistry , Nelumbo/chemistry , Obesity/drug therapy , Obesity/etiology , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , AMP-Activated Protein Kinases/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Animals , Body Weight/drug effects , Cell Survival/drug effects , Cells, Cultured , Lipogenesis/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Obesity/pathology , Obesity/physiopathology , Organ Size/drug effects , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Weight Gain/drug effects
7.
Nutr Cancer ; 66(1): 159-65, 2014.
Article in English | MEDLINE | ID: mdl-24341783

ABSTRACT

This study was performed to determine the antimetastatic activities of chili pepper seed on human breast cancer cells. The water extract of chili pepper seeds was prepared and it contained a substantial amount of phenols (131.12 mg%) and no capsaicinoids. Pepper seed extract (PSE) suppressed the proliferation of MDA-MB-231 and MCF-7 cells at the concentration of 10, 25, and 50 µg/ml (MDA-MB-231: IC50 = 20.1 µg/ml, MCF-7: IC50 = 14.7 µg/ml). PSE increased the expression level of E-cadherin up to 1.2-fold of the control in MCF-7 cells. PSE also decreased the secretion of matrix metalloproteinase (MMP)-2 and MMP-9 in MDA-MB-231 and MCF-7 cells at the concentration of 25 and 50 µg/ml. PSE treatment significantly suppressed the invasion of MDA-MB-231 and MCF-7 cells in a dose-dependent manner. The motility of cancer cells was apparently retarded in the wound healing assay by the PSE treatment. Although our data collectively demonstrate that PSE inhibits invasion and migration of breast cancer cells, further study is needed to identify specific mechanisms and bioactive components contributing to antimetastatic effects of chili pepper seed.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Capsicum/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Breast Neoplasms/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , MCF-7 Cells , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness
8.
Anticancer Res ; 28(5A): 2837-41, 2008.
Article in English | MEDLINE | ID: mdl-19035319

ABSTRACT

Soybean and soy products have received much attention for their potential heath benefits. Recently it has been reported that the bioactivity of soy products is influenced by the degree of soy processing. This study was conducted to evaluate and compare the influence of diets containing genistein and soy extract on the growth of the estrogen-independent human breast cancer cells, MDA-MB-231, implanted into female Balb/c mice. Four-week-old female athymic nude mice (Balb/c) were acclimatized to an AIN-93G control diet for one week prior to initiating the experimental diets. The animals were placed into three treatment groups, each of which was provided with containing DMSO, genistein (750 microg/g AIN-93G diet) or 0.6% soy extract (containing genistein at 750 microg/g AIN-93G diet) for three weeks from one week prior to the injection of MDA-MB-231 cells (1 x 10(6)/site) and subsequently fed on the AIN-93G control diet until sacrifice. The tumor volumes increased steeply in the control group and the genistein-treated group. However, tumor growth was significantly reduced in the soy extract-treated group compared to the control and genistein-treated groups. Immunohistochemistry of proliferating cell nuclear antigen (PCNA) also revealed that the soy extract treatment effectively reduced cell proliferation of the implanted tumors. In conclusion, soy extract is more potent than genistein in the inhibition of tumor growth, presumably resulting from the synergistic effect of the various bioactive components in the soy extract.


Subject(s)
Breast Neoplasms/drug therapy , Genistein/pharmacology , Glycine max , Plant Extracts/pharmacology , Animals , Body Weight/drug effects , Breast Neoplasms/pathology , Cell Growth Processes/drug effects , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
9.
J Nutr Biochem ; 19(3): 175-83, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17869086

ABSTRACT

Rat hepatic stellate cells (HSC-T6) were incubated for 24 h with 10-180 microM of t10c12 (98%), c9t11 (96%) and a mixed form (c9,t11:t10,c12; 41%:44%) of conjugated linoleic acid (CLA). The MTS dye reduction was measured to verify cell viability in a dose-dependent manner. Among the three CLAs, c9,t11-CLA exhibited the most intense cytotoxic effect on HSCs, the survival rate of which was reduced to 60% under 80 microM of treatment, while cell survival was slightly affected by the mixed form. Three CLA-induced cell deaths were determined by measuring DNA fragmentation using 4',6-diamidino-2-phenylindole staining. The degrees of DNA fragmentation were the most severe in HSC treated with 80 microM of c9,t11-CLA. The mitogen-activated protein kinase/extracellular signal-regulated kinase-kinase and mitogen-activated or extracellular signal-regulated protein kinase (MEK) 1 and 2 were not activated in the t10,c12-CLA treatment. This suggests that the MEK-dependent apoptosis signal is crucial in HSC, which is induced by c9,t11 and mixed CLA. In order to evaluate the protective effect of CLA on carbon tetrachloride (CCl4)-induced hepatic fibrosis in vivo, animals were treated with 10% CCl4 to induce hepatic fibrosis during all experimental periods. Rats were divided into two treatment groups: (1) control diet with tap water ad libitum (n=15) and (2) 1% CLA diet with tap water ad libitum (n=15). In the CLA-supplemented rat livers, alpha-smooth muscle actin-positive cells were significantly reduced around the portal vein. In addition, collagen fibers were not detected in the CLA-treated group. These results suggest that 9c,11t-CLA influences cytotoxic effect on HSC in an MEK-dependent manner and preserving liver from fibrosis.


Subject(s)
Apoptosis/drug effects , Carbon Tetrachloride , Linoleic Acids, Conjugated/pharmacology , Liver Cirrhosis/prevention & control , Liver/cytology , Animals , Collagen/genetics , DNA Fragmentation/drug effects , Diet , Extracellular Signal-Regulated MAP Kinases/physiology , Linoleic Acids, Conjugated/administration & dosage , Liver/chemistry , Liver/drug effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Mitogen-Activated Protein Kinases/physiology , RNA, Messenger/analysis , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL