Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 278: 114238, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34048878

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Vernicia fordii (Hemsl.) Airy Shaw (V. fordii) is also known as the tung tree and its leaves and fruit are used as an oriental treatment for dyspepsia, edema, and skin diseases, which are known as diabetic complications. AIM OF THE STUDY: In this study, we aimed to investigate the methanolic extract (VF5) of the leaves of V. fordii as an insulin secretagogue and its probable mechanism and verify the effect in HFD-fed mice. MATERIALS AND METHODS: The insulin secretagogue activity of different doses of VF5 (0.1, 0.3 and 1.0 µg/ml) was assessed using in vitro insulin secretion assay and confirmed the anti-diabetic effect in mice fed HFD for 4 weeks with different doses of VF5 (10, 20 and 50 mg/kg oral) for another 6 weeks. Glbenclamide (30 mg/kg, oral) was used as positive control drug. The possible mechanisms were evaluated by using Gö6983 (10 µM), U73122 (10 µM) and nifedipine (10 µM). The major constituents of VF5 were analyzed by UPLC-QToF-MS and 1H and 13C NMR spectroscopy. RESULTS: UPLC-QToF-MS and NMR spectroscopy analysis indicated that one of the main active components of VF5 was tigliane-diterpene esters. VF5 functioned as an insulin secretagogue and enhanced mitochondria respiration and insulin homeostasis. We confirmed that VF5 preserved the ß-cell and reduced the ß-cell expansion which caused by metabolic stress under HFD. The antidiabetic role of VF5 in HFD fed mice was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT), fasting plasma insulin level, fasting blood glucose level, AKT signal in peripheral tissue in the absence of toxic effects. Mechanistically, insulinotropic effect of VF5 was mediated by activation of PKCα via intracellular Ca2+ influx and enhanced mitochondria function. CONCLUSION: VF5 exhibits potent insulin secretagogue function and improves insulin sensitivity and protection of pancreatic ß-cells from metabolic stress without toxicity. Taken together, our study suggests that VF5 could be potentially used for treating diabetes and metabolic diseases through improving ß-cell function.


Subject(s)
Aleurites/chemistry , Diabetes Mellitus, Experimental/drug therapy , Insulin Secretion/drug effects , Plant Extracts/pharmacology , Animals , Diabetes Mellitus, Experimental/physiopathology , Dose-Response Relationship, Drug , Glucose Tolerance Test , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Insulin Resistance , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Plant Extracts/administration & dosage , Plant Extracts/adverse effects , Stress, Physiological/drug effects
2.
Cell Rep ; 10(1): 75-87, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25543142

ABSTRACT

Changes in basal ganglia plasticity at the corticostriatal and thalamostriatal levels are required for motor learning. Endocannabinoid-dependent long-term depression (eCB-LTD) is known to be a dominant form of synaptic plasticity expressed at these glutamatergic inputs; however, whether eCB-LTD can be induced at all inputs on all striatal neurons is still debatable. Using region-specific Cre mouse lines combined with optogenetic techniques, we directly investigated and distinguished between corticostriatal and thalamostriatal projections. We found that eCB-LTD was successfully induced at corticostriatal synapses, independent of postsynaptic striatal spiny projection neuron (SPN) subtype. Conversely, eCB-LTD was only nominally present at thalamostriatal synapses. This dichotomy was attributable to the minimal expression of cannabinoid type 1 (CB1) receptors on thalamostriatal terminals. Furthermore, coactivation of dopamine receptors on SPNs during LTD induction re-established SPN-subtype-dependent eCB-LTD. Altogether, our findings lay the groundwork for understanding corticostriatal and thalamostriatal synaptic plasticity and for striatal eCB-LTD in motor learning.


Subject(s)
Endocannabinoids/metabolism , Long-Term Synaptic Depression , Neuronal Plasticity , Receptor, Cannabinoid, CB1/biosynthesis , Animals , Basal Ganglia/metabolism , Basal Ganglia/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Gene Expression , Learning/physiology , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Receptor, Cannabinoid, CB1/metabolism , Synapses/metabolism , Synapses/pathology , Thalamus/metabolism , Thalamus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL