Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38543055

ABSTRACT

Scutellaria baicalensis Georgi and Raphanus Sativus Linne herbal mixture (SRE) is a Chinese herbal medicine. In this study, we aimed to evaluate the therapeutic efficacy of SRE as an active ingredient for 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) and to predict the underlying therapeutic mechanisms and involved pathways using network pharmacological analysis. Treatment with SRE accelerated the development of AD-like lesions, improving thickness and edema of the epidermis. Moreover, administering the SRE to AD-like mice suppressed immunoglobulin E and interleukin-4 cytokine and reduced T lymphocyte differentiation. In silico, network analysis was used to predict the exact genes, proteins, and pathways responsible for the therapeutic effect of the SRE against DNCB-induced AD. These results indicated that the SRE exerted protective effects on the DNCB-induced AD-like model by attenuating histopathological changes and suppressing the levels of inflammatory mediators. Therefore, the SRE can potentially be a new remedy for improving AD and other inflammatory diseases and predicting the intracellular signaling pathways and target genes involved. This therapeutic effect of the SRE on AD can be used to treat DNCB-induced AD and its associated symptoms.

2.
Planta Med ; 90(1): 4-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903549

ABSTRACT

Agastache rugosa Kuntze (Lamiaceae; Labiatae), a medicinal and functional herb used to treat gastrointestinal diseases, grows well both on islands and inland areas in South Korea. Thus, we aimed to reveal the morphological and micromorphological differences between A. rugosa grown on island and inland areas and their pharmacological effects on gastritis in an animal model by combining morphological and mass spectrophotometric analyses. Morphological analysis showed that island A. rugosa had slightly smaller plants and leaves than inland plants; however, the density of all types of trichomes on the leaves, petioles, and stems of island A. rugosa was significantly higher than that of inland plants. The essential oil component analysis revealed that pulegone levels were substantially higher in island A. rugosa than in inland A. rugosa. Despite the differences between island and inland A. rugosa, treatment with both island and inland A. rugosa reduced gastric damages by more than 40% compared to the gastritis induction group. In addition, expression of inflammatory protein was reduced by about 30% by treatment of island and inland A. rugosa. The present study demonstrates quantitative differences in morphology and volatile components between island and inland plants; significant differences were not observed between the gastritis-inhibitory effects of island and inland A. rugosa, and the efficacy of island A. rugosa was found to be similar to that of A. rugosa grown in inland areas.


Subject(s)
Agastache , Gastritis , Oils, Volatile , Animals , Plant Leaves , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastritis/chemically induced , Gastritis/drug therapy
3.
J Ethnopharmacol ; 296: 115451, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35724744

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Patients with dementia are diagnosed with deficiency patterns and interior patterns in traditional Chinese medicine due to decreased physical strength, mental atrophy including cognitive function, and decreased motor function in the gastrointestinal tract. Since "greater yin symptom" in Shanghanlun has been interpreted as interior, deficiency, and cold pattern in traditional Chinese medicine, it is necessary to determine whether Geijigadaehwang-tang (GDT) has therapeutic effects on neurodegenerative diseases and the underlying mechanism if it has such effects. AIMS OF THE STUDY: Trimethyltin (TMT), a neurotoxic organotin compound, has been used to induce several neurodegenerative diseases, including epilepsy and Alzheimer's disease. This study aimed to evaluate the therapeutic efficacy of GDT for TMT-induced hippocampal neurodegeneration and seizures and to determine the mechanisms involved at the molecular level. MATERIALS AND METHODS: The main components of GDT were analyzed using ultra-performance liquid chromatography. TMT was used to induce neurotoxicity in microglial BV-2 cells and C57BL6 mice. GDT was administered at various doses to determine its neuroprotective and seizure inhibition effects. The inhibitory effects of GDT on TMT-induced apoptosis, inflammatory pathways, and oxidative stress pathways were determined in the mouse hippocampal tissues. RESULTS: GDT contained emodin, chrysophanol, albiflorin, paeoniflorin, 6-gingerol, and liquiritin apioside. In microglial BV-2 cells treated with TMT, GDT showed dose-dependent neuroprotective effects. Oral administration of GDT five times for 2.5 days before and after TMT injection inhibited seizures at doses of 180 and 540 mg/kg and inhibited neuronal death in the hippocampus. In hippocampal tissues extracted from mice, GDT inhibited the protein expression of ionized calcium binding adaptor molecule 1, glial fibrillary acidic protein, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3, and phosphorylated nuclear factor (NF)-κB/total-NFκB ratio. Additionally, GDT inhibited the messenger RNA levels of tumor necrosis factor-α, inducible nitric oxide synthase, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, interleukin-1ß, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1. CONCLUSION: This study's results imply that GDT might have neuroprotective potential in neurodegenerative diseases through neuronal death inhibition and anti-inflammatory and antioxidant mechanisms.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Animals , Hippocampus , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Trimethyltin Compounds
4.
Biomed Pharmacother ; 145: 112410, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34775237

ABSTRACT

BACKGROUND: Phlomis umbrosa Turczaninow has been used as a tradition herbal medicine for treating various inflammatory diseases. PURPOSE: In present study, we explored the effects of P. umbrosa on asthma induced by ovalbumin (OVA) and elucidated the mechanism via in vivo verification and network pharmacology prediction. METHODS: The animals were intraperitoneally injected OVA on day 1 and 14, followed by OVA inhalation on days 21, 22, and 23. The animals were daily treated P. umbrosa extract (PUE, 20 and 40 mg/kg) by oral gavage from day 18 to day 23. RESULTS: PUE significantly decreased airway hyperresponsiveness, eosinophilia, and the production of inflammatory cytokines and OVA specific immunoglobulin E in animals with asthma, along with a reduction in airway inflammation and mucus secretion in lung tissue. In network analysis, antiasthmatic effects of PUE were closely related with suppression of mitogen-activated protein kinases and matrix metalloproteinases (MMPs). Consistent with the results from network analysis, PUE suppressed the phosphorylation of ERK and p65, which was accompanied by a decline in MMP-9 expression. CONCLUSION: Administration of PUE effectively reduced allergic responses in asthmatic mice, which was associated with the suppressed phosphorylation of ERK and p65, and expression of MMP-9. These results indicate that PUE has therapeutic potential to treat allergic asthma.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Phlomis/chemistry , Plant Extracts/pharmacology , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/isolation & purification , Disease Models, Animal , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Inflammation/drug therapy , Matrix Metalloproteinase 9/genetics , Mice , Mice, Inbred BALB C , Network Pharmacology , Ovalbumin , Phosphorylation/drug effects , Plant Extracts/administration & dosage , Respiratory Hypersensitivity/drug therapy , Transcription Factor RelA/metabolism
5.
J Ethnopharmacol ; 282: 114574, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34461187

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gekko gecko is used as a traditional medicine for various diseases including respiratory disorders in northeast Asian countries, mainly Korea, Japan, and China. AIM OF THE STUDY: Allergic asthma is a chronic respiratory disease caused by an inappropriate immune response. Due to the recent spread of coronavirus disease 2019, interest in the treatment of pulmonary disorders has rapidly increased. In this study, we investigated the anti-asthmatic effects of G. gecko extract (GGE) using an established mouse model of ovalbumin-induced asthma. MATERIALS AND METHODS: To evaluate the anti-asthmatic effects of GGE, we evaluated histological changes and the responses of inflammatory mediators related to allergic airway inflammation. Furthermore, we investigated the regulatory effects of GGE on type 2 helper T (Th2) cell activation. RESULTS: Administration of GGE attenuated asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and expression of Th2 cytokines. Furthermore, GGE treatment reduced Th2 cell activation and differentiation. CONCLUSIONS: These results indicate that GGE alleviates allergic airway inflammation by regulating Th2 cell activation and differentiation.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Medicine, East Asian Traditional , Mucus/metabolism , Ovalbumin , Plant Extracts/therapeutic use , Animals , Asthma/chemically induced , Asthma/pathology , Bronchoalveolar Lavage Fluid , COVID-19 , Cytokines/metabolism , Female , Flow Cytometry , Immunoglobulin E/immunology , Inflammation Mediators/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Pandemics , Th2 Cells/drug effects , Th2 Cells/immunology , Tryptamines/pharmacology
6.
Plants (Basel) ; 10(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34685839

ABSTRACT

The implementation of the Nagoya Protocol highlighted the importance of identifying alternative herbal products that are as effective as traditional medicine. Dipsacus asperoides and Phlomis umbrosa, two species used in the Korean medicine 'Sok-dan', are used for the treatment of bone- and arthritis-related diseases, and they are often mixed or misused. To identify herbal resources with similar efficacy, we compared the effects of D. asperoides extract (DAE) and P. umbrosa extract (PUE) on osteoarthritis (OA) in a monosodium iodoacetate (MIA)-induced OA rat model. Weight-bearing distribution, serum cytokines, histopathological features, and the expression of matrix metalloproteinases (MMPs) of knee joint tissues were examined in the OA rats treated with DAE and PUE (200 mg/kg) for 21 days. DAE and PUE restored weight-bearing distribution, inhibited the production of serum cytokines, and alleviated the histopathological features of the OA knee tissue. DAE or PUE treatment decreased OA-induced overexpression of MMP-2, MMP-9, and MMP-13 in the knee joint tissue. This study demonstrated the efficacy of both DAE and PUE in an MIA-induced OA model, providing a basis for the clinical use of these products in traditional Korean medicine.

7.
J Tradit Chin Med ; 41(3): 390-396, 2021 06.
Article in English | MEDLINE | ID: mdl-34114396

ABSTRACT

OBJECTIVE: To investigate whether scorpion extract elicits a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice models, and the genes associated with the therapeutic effects using RNA sequencing (seq) analysis. METHODS: This study investigated the changes in interaction between messenger ribonucleic acid (mRNA) expression and deoxyribonucleic acid (DNA) methylation related to the protective effects of scorpion extracts, in the substantia nigra (SN) region of a MPTP-induced Parkinson's disease (PD) model. RESULTS: In this model, scorpion extracts attenuated the motor impairment as demonstrated by the rotarod and open field tests. Scorpion extracts consistently attenuated the decrease of tyrosine hydroxylase (TH) positive neural cells in the SN and striatum of mice. We profiled genome- wide DNA methylation using Methyl-Seq and measured the transcriptome using RNA-Seq in murine SN in the following groups: vehicle-treated MPTP-induced PD mice and scorpion extract- treated MPTP-induced PD mice. In total, 13 479 differentially expressed genes were identified in association with the anti-PD effect of the scorpion extract, mainly in the promoter and coding regions. Among them, 47 were negatively correlated down- regulated genes. Nineteen genes out of 47 down- regulated genes were negatively correlated with the expression of the other 28 genes. Among these genes, SGSM1 was related to dopaminergic neu- rons including dopamine transporters, TH, dihy- droxyphenylalanine decarboxylase, and dopamine D2 receptor. CONCLUSION: This study provides insights into the anti-parkinsonian effects of scorpion extract and reveals the epigenetic targets in its therapeutic mechanism.


Subject(s)
Neuroprotective Agents , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Disease Models, Animal , Epigenesis, Genetic , Mice , Mice, Inbred C57BL , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Scorpions
8.
Front Pharmacol ; 12: 615157, 2021.
Article in English | MEDLINE | ID: mdl-33927614

ABSTRACT

The root of Dipsacus asperoides C. Y. Cheng et T. M. Ai is traditionally used as an analgesic and anti-inflammatory agent to treat pain, rheumatoid arthritis, and bone fractures. However, neither its effects on osteoarthritis (OA) nor its effects on the arthritic cartilage tissue transcriptome have not been fully investigated. In this study, we used a rat model of monosodium iodoacetate- (MIA-) induced OA to investigate the therapeutic effects of a Dipsacus asperoides ethanolic extract (DAE, 200 mg/kg for 21 days). The study first assessed joint diameter, micro-CT scans, and histopathological analysis and then conducted gene expression profiling using RNA sequencing in articular cartilage tissue. We found that DAE treatment ameliorates OA disease phenotypes; it reduced the knee joint diameter and prevented changes in the structural and histological features of the joint, thereby showing that DAE has a protective effect against OA. Based on the results of gene expression profiling and subsequent pathway analysis, we found that several canonical pathways were linked to DAE treatment, including WNT/ß-catenin signaling. Taken together, the present results suggest molecular mechanism, involving gene expression changes, by which DAE has a protective effect in a rat model of MIA-induced OA.

9.
Biomolecules ; 11(4)2021 04 10.
Article in English | MEDLINE | ID: mdl-33920120

ABSTRACT

As a traditional medicine with potential antioxidant effects, Tenodera angustipennis egg cases (Mantidis ootheca) are a potential source of new bioactive substances. Herein, three new N-acetyldopamine derivatives, namely, (+)-tenoderin A (1a), (-)-tenoderin A (1b), and tenoderin B (2), along with thirteen known compounds (3-15), were isolated from a 70% EtOH extract of T. angustipennis egg cases. Compound 1 was isolated as a racemic mixture, and two enantiomers (1a and 1b) were successfully separated by chiral-phase preparative HPLC. The chemical structures of the new compounds were established by NMR spectroscopy and high-resolution electrospray ionization mass spectrometry, and the absolute configurations of enantiomers 1a and 1b were determined by electronic circular dichroism spectroscopy. All the new compounds exhibited antioxidant activities with IC50 values of 19.45-81.98 µM, as evaluated using free-radical scavenging assays, with the highest activity observed for compound 2. In addition, compounds 1a, 1b, and 2 exhibited inhibitory activities on intracellular reactive oxygen species generation.


Subject(s)
Antioxidants/chemistry , Mantodea/chemistry , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Circular Dichroism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Magnetic Resonance Spectroscopy , Ovum/chemistry , Reactive Oxygen Species/metabolism , Spectrometry, Mass, Electrospray Ionization
10.
Phytomedicine ; 81: 153429, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310311

ABSTRACT

BACKGROUND: Phlomis umbrosa Turczaninow root has been traditionally used to treat fractures, rheumatoid arthritis, and arthralgia. However, the effects and mechanisms of P. umbrosa on osteoarthritis (OA) remain poorly understood and a functional genomic approach has not been investigated. AIM: The purpose of this study was to investigate the effects and mechanisms of P. umbrosa extract (PUE) on OA using transcriptomic analysis. METHODS: We performed joint diameter measurements, micro computed tomography, and histopathological analysis of monosodium iodoacetate (MIA)-induced OA rats treated with PUE (200 mg/kg) for 3 weeks. Gene expression profiling in articular cartilage tissue was then performed using RNA sequencing (RNA-seq) followed by signaling pathway analysis of regulatory genes. RESULTS: PUE treatment improved OA based on decreased joint diameter, increased joint morphological parameters, and histopathological features. Many genes involved in multiple signal transduction pathway and collagen activation in OA were differentially regulated by PUE. These included genes related to Wnt/ß-catenin, OA pathway, and sonic hedgehog signaling activity. Furthermore, PUE treatment downregulated cartilage damage factors (MMP-9, MMP-13, ADAMTs4, and ADMATs5) and upregulated chondrogenesis (COL2A1 and SOX-9) by regulating the transcription factors SOX-9, Ctnnb1, and Epas1. CONCLUSION: Based on the results of gene expression profiling, this study highlighted the molecular mechanisms underlying the effects of PUE in MIA-induced OA rats. The findings provide novel insight into the mechanisms by which PUE treatment-induced gene expression changes may influence OA disease progression. Taken together, the results suggest that PUE may be used as a source of therapeutic agents for OA.


Subject(s)
Osteoarthritis/drug therapy , Osteoarthritis/genetics , Phlomis/chemistry , Plant Extracts/pharmacology , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Chondrogenesis/drug effects , Chondrogenesis/genetics , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/drug effects , Iodoacetates/toxicity , Joints/drug effects , Joints/pathology , Male , Osteoarthritis/chemically induced , Osteoarthritis/pathology , Plant Extracts/chemistry , Rats, Sprague-Dawley , X-Ray Microtomography
11.
Plants (Basel) ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256150

ABSTRACT

Scrophulariae Radix, derived from the dried roots of Scrophularia ningpoensis Hemsl. or S. buergeriana Miq, is a traditional herbal medicine used in Asia to treat rheumatism, arthritis, and pharyngalgia. However, the effects of Scrophularia buergeriana, S. koraeinsis, and S. takesimensis on osteoclast formation and bone resorption remain unclear. In this study, we investigated the morphological characteristics and harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis, and compared the effects of ethanol extracts of these species using nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation. The harpagoside content of the three Scrophularia species was analyzed by high-performance liquid chromatography-mass spectrometry (HPLC/MS). Their therapeutic effects were evaluated by tartrate-resistant acid phosphatase (TRAP)-positive cell formation and bone resorption in bone marrow-derived macrophages (BMMs) harvested from ICR mice. We confirmed the presence of harpagoside in the Scrophularia species. The harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis was 1.94 ± 0.24 mg/g, 6.47 ± 0.02 mg/g, and 5.50 ± 0.02 mg/g, respectively. Treatment of BMMs with extracts of the three Scrophularia species inhibited TRAP-positive cell formation in a dose-dependent manner. The area of hydroxyapatite-absorbed osteoclasts was markedly decreased after treatment with the three Scrophularia species extracts. Our results indicated that the three species of the genus Scrophularia might exert preventive effects on bone disorders by inhibiting osteoclast differentiation and bone resorption, suggesting that these species may have medicinal and functional value.

12.
Biomolecules ; 10(9)2020 09 09.
Article in English | MEDLINE | ID: mdl-32916904

ABSTRACT

Agastache rugosa is used as a Korean traditional medicine to treat gastric diseases. However, the active ingredients and pharmacological targets of A. rugosa are unknown. In this study, we aimed to reveal the pharmacological effects of A. rugosa on gastritis by combining a mice model and a network pharmacology method. The macrophage and gastritis-induced models were used to evaluate the pharmacological effects of A. rugosa. The results show that A. rugosa relieved mucosal damage induced by HCl/EtOH in vivo. Network analysis identified 99 components in A. rugosa; six components were selected through systematic screening, and five components were linked to 45 gastritis-related genes. The main components were acacetin and luteolin, and the identified core genes were AKT serine/threonine kinase 1 (AKT1), nuclear factor kappa B inhibitor alpha (NFKBIA), and mitogen-activated protein kinase-3 (MAPK3) etc. in this network. The network of components, target genes, protein-protein interactions, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was closely connected with chemokines and with phosphoinositide 3-kinase-Akt (PI3K/AKT), tumor-necrosis-factor alpha (TNFα), mitogen-activated protein kinase, nuclear factor kappa B, and Toll-like receptor (TLR) pathways. In conclusion, A. rugosa exerts gastro-protective effects through a multi-compound and multi-pathway regulatory network and holds potential for treating inflammatory gastric diseases.


Subject(s)
Agastache/chemistry , Gastritis/drug therapy , Gastritis/genetics , Metabolic Networks and Pathways/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Cell Survival/drug effects , Disease Models, Animal , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastritis/pathology , Gene Expression Regulation/drug effects , Inflammation/prevention & control , Macrophages/drug effects , Medicine, Korean Traditional/methods , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Plant Extracts/chemistry , Protective Agents/chemistry , Protein Interaction Maps , RAW 264.7 Cells , Signal Transduction/drug effects
13.
Cells ; 9(3)2020 03 10.
Article in English | MEDLINE | ID: mdl-32164364

ABSTRACT

Silica dioxide nanoparticles (SiONPs) have been applied to several fields, such as drug delivery and gene therapy. However, SiONPs are a constituent of fine dust and can induce excessive inflammatory responses in the lungs via the airways. Silibinin, a major component of silymarin, has been known for its anti-oxidant and anti-inflammatory effects. In the present study, we explored the protective effects of silibinin against SiONPs-induced airway inflammation and explored its underlying mechanism of action, focusing on thioredoxin-interacting protein (TXNIP)/mitogen-activated protein kinases (MAPKs) in vitro and in vivo. In SiONPs-stimulated NCI-H292 airway epithelial cells, silibinin treatment effectively suppressed the elevation of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß, which was accompanied by the reduction in the expression of TXNIP, MAPKs, and activator protein-1 (AP-1). In SiONPs-treated mice, silibinin administration inhibited the increase in inflammatory cell counts and proinflammatory mediators, and it alleviated airway inflammation by SiONPs exposure. In addition, silibinin administration effectively suppressed the elevation of TXNIP/MAPKs/AP-1 signaling by SiONPs exposure. Taken together, silibinin effectively inhibited SiONPs-induced inflammatory responses, and this effect was closely related to the inhibition of TXNIP/MAPK/AP-1 signaling. These results suggested that silibinin might be useful for reducing pulmonary inflammation induced by SiONPs.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Mitogen-Activated Protein Kinases/metabolism , Silicon Dioxide/therapeutic use , Silybin/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Humans , Inflammation , Mice , Nanoparticles , Signal Transduction , Silicon Dioxide/pharmacology , Silybin/pharmacology
14.
Antioxidants (Basel) ; 9(2)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991647

ABSTRACT

Scrophularia koraiensis Nakai (Scrophulariaceae) is a medicinal herb that grows in Korea and which has been widely used to treat fever, edema, neuritis and laryngitis. Hence, we evaluated the anti-inflammatory and antioxidant effects of the ethanol extract (SKE) of S. koraiensis Nakai in an ovalbumin (OVA)-induced mouse model. We injected 20 µg of OVA with 2 mg of aluminum on day 0 and day 14 to induce allergic airway inflammation in six-week-old BALB/c mice, and mice were challenged with 1% OVA by nebulization for 1 h on days 21, 22, and 23. SKE was orally administered at 20 mg/kg and 40 mg/kg from day 18 to 23, and its effects were compared with those of montelukast treatment. SKE significantly reduced proinflammatory cytokines, inflammatory cell counts, immunoglobulin-E, and airway hyperresponsiveness during the OVA-induced allergic airway inflammation model; it also reduced airway inflammation and mucus production. In addition, SKE reduced the OVA-induced nuclear factor kappa B (NF-κB) phosphorylation in lung tissues while enhancing nuclear factor erythroid-derived 2-related factor (Nrf-2) and heme oxygenase-1 (HO-1) expression. In conclusion, SKE showed the protective effects on OVA-induced allergic airway inflammation via the suppression of NF-κB phosphorylation and the enhancement of the Nrf2/HO-1 signaling pathway. These results indicate that SKE is a potential therapeutic agent for allergic airway inflammation.

15.
Phytomedicine ; 67: 153159, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31901567

ABSTRACT

BACKGROUND: Scrophularia buergeriana Miq. (Scrophulariaceae) (SB) has been used as an oriental medicine for the treatment of inflammatory diseases, such as neuritis and pharyngolaryngitis. PURPOSE: We explored the therapeutic effects of S. buergeriana ethanol extract (SBE) on airway inflammation in ovalbumin (OVA)-induced asthmatic mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. METHODS: Mice were intraperitoneally injected with OVA on days 0 and 14 to elevate the immune response. On days 21 to 23, the mice were challenged with OVA solution and SBE (20 and 40 mg/kg) was administered daily by oral gavage from days 18 to 23. RAW264.7 cells were pretreated with SBE 1 h before LPS stimulation. RESULTS: SBE administration effectively suppressed inflammatory cell infiltration, the expression of interleukin (IL)-5, IL-13, and IL-17, immunoglobulin E, and airway hyperresponsiveness in an OVA-induced allergic asthma model. A reduction in histological alterations, including airway inflammation and mucus hypersecretion, was observed. These effects of SBE were accompanied by a decrease in matrix metalloproteinase-9 (MMP-9) expression and nuclear factor kappa B (NF-κB) phosphorylation. These responses were observed in LPS-stimulated RAW264.7 cells. SBE treatment reduced the mRNA expression of tumor necrosis factor (TNF)-α, IL-6, and MMP-9, and NF-κB phosphorylation, in LPS-stimulated RAW264.7 cells. CONCLUSION: Our results indicated that SBE effectively attenuated airway inflammation in an OVA-induced allergic asthma model. These properties of SBE were thought to be involved in the suppression of NF-κB phosphorylation, suggesting that the material has the potential to regulate the development of allergic asthma.


Subject(s)
Asthma/drug therapy , Inflammation/drug therapy , NF-kappa B/metabolism , Plant Extracts/pharmacology , Scrophularia/chemistry , Animals , Asthma/chemically induced , Disease Models, Animal , Female , Hypersensitivity/drug therapy , Hypersensitivity/physiopathology , Immunoglobulin E/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Ovalbumin/adverse effects , Phosphorylation/drug effects , RAW 264.7 Cells
16.
Front Pharmacol ; 11: 594706, 2020.
Article in English | MEDLINE | ID: mdl-33519458

ABSTRACT

Licorice and dried ginger decoction (Gancao-ganjiang-tang, LGD) is used for nausea and anorexia, accompanied by excessive sweating in Traditional Chinese Medicine. Herein, we investigated the therapeutic effects of LGD using the activity-based anorexia (ABA) in a mouse model. Six-week-old female BALB/c AnNCrl mice were orally administered LGD, water, licorice decoction, dried ginger decoction, or chronic olanzapine, and their survival, body weight, food intake, and wheel activity were compared in ABA. Additionally, dopamine concentration in brain tissues was evaluated. LGD significantly reduced the number of ABA mice reaching the drop-out criterion of fatal body weight loss. However, LGD showed no significant effects on food intake and wheel activity. We found that in the LGD group the rise of the light phase activity rate inhibited body weight loss. Licorice or dried ginger alone did not improve survival rates, they only showed longer survival periods than chronic olanzapine when combined. In addition, LGD increased the dopamine concentration in the brain. The results from the present study showed that LGD improves the survival of ABA mice and its mechanism of action might be related to the alteration of dopamine concentration in the brain.

17.
Antioxidants (Basel) ; 8(12)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766449

ABSTRACT

Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Altered redox homeostasis in neurons interferes with several biological processes, ultimately leading to neuronal death. Oxidative damage has been identified as one of the principal mechanisms underlying the progression of PD. Several studies highlight the key role of superoxide radicals in inducing neuronal toxicity. Batryticatus Bombyx (BB), the dried larva of Bombyx mori L. infected by Beauveria bassiana (Bals.) Vuill., has been used in traditional medicine for its various pharmacological effects. In the present study, BB showed a beneficial effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by directly targeting dopaminergic neurons. Treatment with BB improved behavioral impairments, protected dopaminergic neurons, and maintained dopamine levels in PD mouse models. Here, we investigated the protective effects of BB on MPTP-induced PD in mice and explored the underlying mechanisms of action, focusing on oxidative signaling. In MPTP-induced PD, BB promoted recovery from impaired movement, prevented dopamine depletion, and protected against dopaminergic neuronal degradation in the substantia nigra pars compacta (SNpc) or the striatum (ST). Moreover, BB upregulated mediators of antioxidative response such as superoxidase dismutase (SOD), catalase (CAT), glutathione (GSH), Heme oxygenase 1 (HO-1), and NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase (NQO1). Thus, treatment with BB reduced the oxidative stress, improved behavioral impairments, and protected against dopamine depletion in MPTP-induced toxicity.

18.
Oxid Med Cell Longev ; 2019: 5797512, 2019.
Article in English | MEDLINE | ID: mdl-31772707

ABSTRACT

Parkinson's disease (PD) is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta (SNPC) and the striatum. Nuclear receptor-related 1 protein (Nurr1) is a nuclear hormone receptor implicated in limiting mitochondrial dysfunction, apoptosis, and inflammation in the central nervous system and protecting dopaminergic neurons and a promising therapeutic target for PD. Cicadidae Periostracum (CP), the cast-off skin of Cryptotympana pustulata Fabricius, has been used in traditional medicine for its many clinical pharmacological effects, including the treatment of psychological symptoms in PD. However, scientific evidence for the use of CP in neurodegenerative diseases, including PD, is lacking. Here, we investigated the protective effects of CP on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced PD in mice and explored the underlying mechanisms of action, focusing on Nurr1. CP increased the expression levels of Nurr1, tyrosine hydroxylase, DOPA decarboxylase, dopamine transporter, and vesicular monoamine transporter 2 via extracellular signal-regulated kinase phosphorylation in differentiated PC12 cells and the mouse SNPC. In MPTP-induced PD, CP promoted recovery from movement impairments. CP prevented dopamine depletion and protected against dopaminergic neuronal degradation via mitochondria-mediated apoptotic proteins such as B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X, cytochrome c, and cleaved caspase-9 and caspase-3 by inhibiting MPTP-induced neuroinflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase 2, and glial/microglial activation. Moreover, CP inhibited lipopolysaccharide-induced neuroinflammatory cytokines and response levels and glial/microglial activation in BV2 microglia and the mouse brain. Our findings suggest that CP might contribute to neuroprotective signaling by regulating neurotrophic factors primarily via Nurr1 signaling, neuroinflammation, and mitochondria-mediated apoptosis.


Subject(s)
Hemiptera/pathogenicity , Skin/chemistry , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , Male , Medicine, Traditional , Mice , Parkinson Disease/metabolism
19.
Front Pharmacol ; 10: 892, 2019.
Article in English | MEDLINE | ID: mdl-31474856

ABSTRACT

Background and Aims: Radiation-induced intestinal injury occurred in application of radiotherapy for abdominal and pelvic cancers or in nuclear accidents. Radiation-induced enteritis may be considered an ideal model of gastrointestinal inflammation. The endothelium is a crucial component of inflammation, and the endothelial dysfunction following radiation exposure induces the intestinal proinflammatory response and progression of radiation enteritis. Baicalein (5,6,7-trihydroxyflavonoid) is a flavonoid from Scutellaria baicalensis used in oriental herbal medicine. Baicalein has been found to have multiple beneficial properties including antioxidant, anti-inflammatory, anti-allergic, and anti-cancer activities. Here, we investigated the therapeutic effects of baicalein on endothelial dysfunction in radiation-induced intestinal inflammation. Materials and Methods: We performed histological analysis, bacterial translocation, and intestinal permeability assays and also assessed infiltration of leukocytes and inflammatory cytokine expression using a mouse model of radiation-induced enteritis. In addition, to investigate the effect of baicalein in endothelial dysfunction, we analyzed endothelial-derived adherent molecules in human umbilical vein endothelial cells (HUVECs) and irradiated intestinal tissue. Results: Histological damage such as shortening of villi length and impaired intestinal crypt function was observed in the radiation-induced enteritis mouse model. Intestinal damage was attenuated in baicalein-treated groups with improvement of intestinal barrier function. Baicalein inhibited the expression of radiation-induced adherent molecules in HUVECs and intestine of irradiated mouse and decreased leukocyte infiltration in the radiation-induced enteritis. Conclusions: Baicalein could accelerate crypt regeneration via recovery of endothelial damage. Therefore, baicalein has a therapeutic effect on radiation-induced intestinal inflammation by attenuating endothelial damage.

20.
Article in English | MEDLINE | ID: mdl-31080484

ABSTRACT

Background. Mantidis Ootheca (MO), described as the ootheca of Hierodula patellifera Serville, 1839, Tenodera angustipennis (Saussure, 1869), or Statilia maculate (Thunberg, 1784) in Korean Herbal Pharmacopoeia, is an important herbal material that has been traditionally used for treating several medical conditions including renal failure, spermatorrhea, and pediatric enuresis in Korea. Objective. The present study investigated the potential subacute toxicity of MO water extract during a 2-week repeated oral administration of doses of 0, 50, 150, or 450 mg/kg/day to C57BL/6 male mice by gavage. Methods. The following parameters were examined during the study period: mortality, clinical signs, body weight, hematology, serum biochemistry, gross findings, organ weight, and histopathology. All the mice were euthanized at the end of the treatment period. Results. No treatment-related changes in mortalities, clinical signs, body weight, gross finding, and organ weight change were detected after 14 days of oral MO extract administration. In addition, no meaningful MO extract treatment-related changes were observed in the hematological, serum biochemical, and histopathological parameters compared with the normal control group following treatment with doses of up to 450 mg/kg/day. Conclusion. Based on these findings, we concluded that treatment of mice with the water extract of MO did not result in significant toxicity and, therefore, it could be considered safe for further pharmacological studies.

SELECTION OF CITATIONS
SEARCH DETAIL