Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nutrients ; 15(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37432154

ABSTRACT

Plant extracts including secondary metabolites have anti-inflammatory and anti-obesity activities. This study was conducted to investigate the anti-obesity properties of fermented Artemisia annua (AW) and Salicornia herbacea (GW) in vitro and in mice. The metabolite profiling of AW and GW extracts was performed using UHPLC-LTQ-Orbitrap-MS/MS, and gene expression was analyzed using real-time PCR for adipocyte difference factors. The anti-obesity effects in mice were measured using serum AST, ALT, glucose, TG, and cholesterol levels. Metabolites of the plant extracts after fermentation showed distinct differences with increasing anti-obesity active substances. The efficacy of inhibitory differentiation adipogenesis of 3T3-L1 adipocytes was better for GW than AW in a concentration-dependent manner. RT-PCR showed that the GW extract significantly reduced the expression of genes involved in adipocyte differentiation and fat accumulation (C/EBPα, PPARγ, and Fas). In C57BL/6 mice fed the HFD, the group supplemented with AW and GW showed reduced liver weight, NAS value, and fatty liver by suppressing liver fat accumulation. The GW group significantly reduced ALT, blood glucose, TG, total cholesterol, and LDL-cholesterol. This study displayed significant metabolite changes through biotransformation in vitro and the increasing anti-obesity effects of GW and AW in mice. GW may be applicable as functional additives for the prevention and treatment of obesity.


Subject(s)
Artemisia annua , Chenopodiaceae , Animals , Mice , Mice, Inbred C57BL , Tandem Mass Spectrometry , Cholesterol, LDL
2.
Molecules ; 28(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37175224

ABSTRACT

The pharmacological potential of industrial hemp (Cannabis sativa) has been widely studied. However, the majority of studies have focused on cannabidiol, isolated from the inflorescence and leaf of the plant. In the present study, we evaluated the anti-diabetic potential of hemp root water (HWE) and ethanol extracts (HEE) in streptozotocin (STZ)-induced insulin-deficient diabetic mice. The administration of HWE and HEE ameliorated hyperglycemia and improved glucose homeostasis and islet function in STZ-treated mice (p < 0.05). HWE and HEE suppressed ß-cell apoptosis and cytokine-induced inflammatory signaling in the pancreas (p < 0.05). Moreover, HWE and HEE normalized insulin-signaling defects in skeletal muscles and apoptotic response in the liver and kidney induced by STZ (p < 0.05). Gas chromatography-mass spectrometry analysis of HWE and HEE showed possible active compounds which might be responsible for the observed anti-diabetic potential. These findings indicate the possible mechanisms by which hemp root extracts protect mice against insulin-deficient diabetes, and support the need for further studies geared towards the application of hemp root as a novel bioactive material.


Subject(s)
Cannabis , Diabetes Mellitus, Experimental , Mice , Animals , Cannabis/chemistry , Insulin/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Plant Extracts/therapeutic use , Pancreas , Streptozocin/pharmacology
3.
Mater Horiz ; 10(5): 1559-1579, 2023 May 09.
Article in English | MEDLINE | ID: mdl-36799148

ABSTRACT

Among diverse strategies to manage air quality, catalytic oxidation has been a widely used option to mitigate diverse pollutants such as aromatic volatile organic compounds (VOCs), especially benzene, toluene, and xylene (BTX). For such applications, TiO2-based catalysts have drawn significant research attention for their prominent photo/thermal catalytic activities and photochemical stability. This review has been organized to elaborate on the recent developments achieved in the thermocatalytic, photocatalytic, and photothermal applications of metal/non-metal doped TiO2 catalysts towards BTX vapors and their reaction mechanisms. The performance of the reported TiO2-based catalysts has also been analyzed based on multiple computational metrics such as reaction rate (r), quantum yield (QY), space-time yield, and figure of merit (FOM). At last, the research gap and prospects in the catalytic treatment of BTX are also discussed in association with the feasibility and utility of TiO2-based catalysts in air purification applications.

4.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499541

ABSTRACT

Overweight and obesity, associated with various health complications, refer to abnormal or excessive fat accumulation conditions that harm health. Like humans, obesity is a growing problem in dogs, which may increase the risk of serious diseases such as diabetes and cancer. Mulberry leaf has shown potential anti-obesity and anti-diabetes effects in several studies. Our research studied the impact of mulberry leaf supplements in healthy old overweight dogs for 12 weeks. Blood and fecal samples were collected from the dogs before and after treatment for different analyses, including whole transcriptome and gut microbiome analysis. The Body Condition Score (BCS) and blood glucose levels were significantly decreased in all mulberry treatment groups, which justifies the anti-obesity effect of mulberry leaf in dogs. Throughout the whole transcriptome study, the downregulation of PTX3 and upregulation of PDCD-1, TNFRSF1B, RUNX3, and TICAM1 genes in the high mulberry group were found, which have been associated with anti-inflammatory effects in the literature. It may be an essential gene expression mechanism responsible for the anti-inflammatory and, subsequently, anti-obesity effects associated with mulberry leaf treatment, as confirmed by real-time polymerase chain reaction analysis. In microbiome analysis, Papillibacter cinnamivorans, related to the Mediterranean diet, which may cause anti-inflammatory effects, were abundant in the same treatment group. Further studies may be required to establish the gene expression mechanism and role of abundant bacteria in the anti-obesity effect of mulberry supplements in dogs. Overall, we propose mulberry leaves as a portion of food supplements for improving blood glucose levels and the anti-inflammation of blood in companion dogs.


Subject(s)
Diabetes Mellitus , Morus , Humans , Dogs , Animals , Aged , Blood Glucose , Plant Leaves/metabolism , Obesity/metabolism , Overweight/complications , Dietary Supplements , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
5.
Animals (Basel) ; 12(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36139238

ABSTRACT

In this study, we examined the effect of diets supplemented with organic and inorganic mineral premixes on the laying performance and eggshell quality of aged laying hens. A total of 600 68-week-old Hy-Line Brown laying hens were randomly assigned to 1 of 3 dietary treatments, repeated 5 times: Mash type basal diet, basal diet supplemented with an inorganic mineral premix (1.0 g/kg), and basal diet supplemented with an organic mineral premix (1.8 g/kg). The results showed that eggshell strength was higher (p < 0.01) in the inorganic mineral diet group than in the organic mineral and basal diet groups. Further, the levels of Fe and Mn in the liver were higher (p < 0.05) in the inorganic and organic mineral diet groups than in the basal diet group. The concentrations of Fe and Mg in the spleen were different (p < 0.05) among the treatment groups, with the highest levels reported in the organic mineral premix group. The concentrations of Cu, Zn, and Mn in the eggshell were different (p < 0.05) among the groups, with the highest levels reported in the inorganic and organic mineral premix diet groups. In conclusion, a diet containing organic mineral premix improved eggshell strength and had no detrimental effect on the laying performance of aged laying hens.

6.
Sci Total Environ ; 838(Pt 2): 156039, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35595144

ABSTRACT

The transmission dynamics and health risks of coronavirus disease 2019 (COVID-19) pandemic are inextricably linked to ineract with environment, climate, air pollution, and meteorological conditions. The spread of COVID-19 infection can thus perturb the 'planetary health' and livelihood by exerting impacts on the temporal and spatial variabilities of environmental pollution. Prioritization of COVID-19 by the health-care sector has been posing a serious threat to economic progress while undermining the efforts to meet the United Nations' Sustainable Development Goals (SDGs) for environmental sustainability. Here, we review the multifaceted effects of COVID-19 with respect to environmental quality, climatic variables, SDGs, energy resilience, and sustainability programs. It is well perceived that COVID-19 may have long-lasting and profound effects on socio-economic systems, food security, livelihoods, and the 'nexus' indicators. To seek for the solution of these problems, consensus can be drawn to establish and ensure a sound health-care system, a sustainable environment, and a circular bioeconomy. A holistic analysis of COVID-19's effects on multiple sectors should help develop nature-based solutions, cleaner technologies, and green economic recovery plans to help maintain environmental sustainability, ecosystem resilience, and planetary health.


Subject(s)
COVID-19 , COVID-19/epidemiology , Ecosystem , Humans , Pandemics , Sustainable Development , United Nations
7.
Environ Int ; 158: 106944, 2022 01.
Article in English | MEDLINE | ID: mdl-34689036

ABSTRACT

Ground water contamination by radioactive elements has become a critical issue that can pose significant threats to human health. Adsorption is the most promising approach for the removal of radioactive elements owing to its simplicity, effectiveness, and easy operation. Among the plethora of functional adsorbents, graphene oxide and its derivatives are recognized for their excellent potential as adsorbent with the unique 2D structure, high surface area, and intercalated functional groups. To learn more about their practical applicability, the procedures involved in their preparation and functionalization are described with the microscopic removal mechanism by GO functionalities across varying solution pH. The performance of these adsorbents is assessed further in terms of the basic performance metrics such as partition coefficient. Overall, this article is expected to provide valuable insights into the current status of graphene-based adsorbents developed for uranium removal with a guidance for the future directions in this research field.


Subject(s)
Graphite , Uranium , Water Pollutants, Chemical , Adsorption , Humans , Water , Water Pollutants, Chemical/analysis
8.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205739

ABSTRACT

The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.


Subject(s)
Antineoplastic Agents, Phytogenic , Cycadopsida/chemistry , Neoplasms/drug therapy , Humans
9.
ACS Sens ; 5(12): 4081-4091, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33270427

ABSTRACT

Small molecules with no or little charge are considered to have minimal impact on signals measured by field effect transistor (FET) sensors. This fact typically excludes steroids from the family of analytes, detected by FETs. We present a portable multiplexed platform based on an array of nanowire sensors for label-free monitoring of daytime levels of the stress hormone cortisol in saliva samples, obtained from multiple donors. To achieve an effective quantification of the cortisol with FETs, we rely on the specific DNA aptamer sequences as receptors, bringing the complex "target-receptor" closer to the nanowire surface. Upon binding, cortisol induces conformational changes of negatively charged aptamers, wrapping it into a close proximity to the silicon nanowires, to efficiently modulate their surface potential. Thus, the sensors allow for a real-time assessment of the steroid biomarkers at low nanomolar concentration. The measurement platform is designed in a building-block concept, consisting of a modular measuring unit and a customizable biochip board, and operates using a complementary metal-oxide-semiconductor-integrated multiplexer. The platform is capable of continuous and simultaneous measurement of samples from multiple patients. Cortisol levels detected with the presented platform agreed well with the results obtained with a commercial high-sensitivity immunoassay.


Subject(s)
Biosensing Techniques , Nanowires , Biomarkers , Humans , Saliva , Transistors, Electronic
10.
Environ Res ; 188: 109749, 2020 09.
Article in English | MEDLINE | ID: mdl-32531524

ABSTRACT

Ocimum has long been used as a medicinal plant, although little information is available about its bioactive ingredients, and the influence of soil properties on modulation of secondary metabolites in Ocimum has yet to be ascertained. In this study, we present a thorough survey of all potential metabolic compounds in O. sanctum and O. basilicum. In both species, certain compounds (e.g., quercetin, kaempferol, catechin, and S-adenosyl homocysteine) were detected coincidently. In the case of O. basilicum, other vital phenolic acids (e.g., ursolic, vanilic, coumaric, and syringic acids) were identified. The aqueous extracts (AEs) of Ocimum recorded decrease of 6-94% in the proliferation of pathogenic bacteria (e.g., Listeria monocytogenes, Staphylococcus sp., Salmonella sp., and Bacillus sp.). The AEs also showed effective antioxidant activity by reducing free radicals by a factor of 1.04-1.13. Root-zone soil samples of both Ocimum spp. were collected from strategic locations with varying levels of key soil attributes (e.g., soil organic carbon (SOC), microbial biomass carbon (MBC), urease, and phosphatase). At high levels of SOC, MBC, and soil enzymes, the bioactivity of Ocimum spp. was observed to be promoted, especially with respect to secondary metabolite expression, anti-pathogenic activity, and anti-oxidant properties. As such, the findings of strong correlations between secondary metabolite concentrations and bioactivity attributes in Ocimum suggest the potent role of soil quality in eliciting the production of secondary metabolite in association with bioactivity in Ocimum spp.


Subject(s)
Ocimum basilicum , Ocimum , Antioxidants , Carbon , Soil
11.
Nutrients ; 11(11)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31726767

ABSTRACT

In this study, we investigated the effects of black ginseng (BG) and ginsenoside Rb1, which induced browning effects in 3T3-L1 and primary white adipocytes (PWATs) isolated from C57BL/6 mice. BG and Rb1 suppressed the expressions of CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding transcription factor-1c (SREBP-1c), whereas the expression level of peroxisome proliferator-activated receptor gamma (PPARγ) was increased. Furthermore, BG and Rb1 enhanced the protein expressions of the brown-adipocyte-specific markers PR domain containing 16 (PRDM16), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and uncoupling protein 1 (UCP1). These results were further supported by immunofluorescence images of mitochondrial biogenesis. In addition, BG and Rb1 induced expressions of brown-adipocyte-specific marker proteins by AMP-activated protein kinase (AMPK) activation. BG and Rb1 exert antiobesity effects by inducing browning in 3T3-L1 cells and PWATs through AMPK-mediated pathway activation. We suggest that BG and Rb1 act as potential functional antiobesity food agents.


Subject(s)
Adipocytes, Brown/drug effects , Adipocytes, White/drug effects , Adipogenesis/drug effects , Anti-Obesity Agents/pharmacology , Ginsenosides/pharmacology , Panax , Plant Extracts/pharmacology , Uncoupling Protein 1/metabolism , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Organelle Biogenesis , PPAR gamma/metabolism , Panax/chemistry , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Plant Extracts/isolation & purification , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factors/metabolism , Up-Regulation
12.
J Hazard Mater ; 379: 120584, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31419722

ABSTRACT

Water is essential for every living being. Increasing population, mismanagement of water sources, urbanization, industrialization, globalization, and global warming have all contributed to the scarcity of fresh water sources and the growing demand of such resources. Securing and allocating sufficient water resources has thus become one of the current major global challenges. Membrane technology has dominated the field of water purification due to its ease of usage and fabrication with high efficiency. The development of novel membrane materials can hence play a central role in advancing the field of membrane technology. It is noted that polymer-clay nanocomposites have been used widely for treatment of waste water. Nonetheless, not much efforts have been put to functionalize their membranes to be selective for specific targets. This review was organized to offer better insights into various types of functional polymer and clays composite membranes developed for efficient treatment and purification of water/wastewater. Our discussion was extended further to evaluate the efficacy of membrane techniques employed in the water industry against major chemical (e.g., heavy metal, dye, and phenol) and biological contaminants (e.g., biofouling).

13.
Environ Res ; 177: 108569, 2019 10.
Article in English | MEDLINE | ID: mdl-31352301

ABSTRACT

The development of benign and efficient approaches for treating industrial grade toxic organic dyes is an ongoing challenge. To this end, copper oxide nanoparticles (CuO NPs) were prepared by a simple, environment friendly, and economical green synthesis procedure by using Psidium guajava leaf extract as reducing agent (i.e., for the reduction of metal salt) as well as capping agent and copper acetate monohydrate as metal salt. The formation of mono-dispersed and spherical (average size 2-6 nm with BET surface area 52.6 m2/g) CuO NPs was confirmed by various spectroscopic and microscopic techniques. The CuO NPs exhibited excellent degradation efficiency for the industrial dyes, i.e., Nile blue (NB) (93% removal in 120 min) and reactive yellow 160 (RY160) (81% removal in 120 min) with apparent rate constants of 0.023 and 0.014 min-1, respectively. The CuO catalyst was found to be reusable for photocatalytic dye degradation even after five consecutive cycles. The limit of detection (LOD) values for NB and RY160 were 4 and 9 mg/L, respectively. In light of their high reusability and photocatalytic efficiency along with adaptability to green synthesis, the use of biogenic CuO NPs is a promising option for the purification of water resources contaminated with industrial dye.


Subject(s)
Coloring Agents/chemistry , Metal Nanoparticles/chemistry , Copper/chemistry , Nanoparticles , Oxides , Photochemical Processes , Plant Extracts , Water Purification/methods
14.
Chemosphere ; 221: 392-402, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30641380

ABSTRACT

Toxic substances such as heavy metals or persistent organic pollutants raise global environmental concerns. Thus, diverse water decontamination approaches using nano-adsorbents and/or photocatalysts based on nanotechnology are being developed. Particularly, many studies have examined the removal of organic and inorganic contaminants with novel graphene-based nano spinel ferrites (GNSFs) as potential cost-effective alternatives to traditionally used materials, owing to their enhanced physical and chemical properties. The introduction of magnetic spinel ferrites into 2-D graphene-family nanomaterials to form GNSFs brings various benefits such as inhibited particle agglomeration, enhanced active surface area, and easier magnetic separation for reuse, making the GNSFs highly efficient and eco-friendly materials. Here, we present a short review on the state-of-the-art progresses on developments of GNSFs, as well as their potential application for removing several recalcitrant contaminants including organic dyes, antibiotics, and heavy metal ions. Particularly, the mechanisms involved in the adsorptive and photocatalytic degradation are thoroughly reviewed, and the reusability of the GNSFs is also highlighted. This review concludes that the GNSFs hold great potential in remediating contaminated aquatic environments. Further studies are needed for their practical and large-scale applications.


Subject(s)
Ferric Compounds/chemistry , Graphite/chemistry , Water Pollutants, Chemical/isolation & purification , Aluminum Oxide , Magnesium Oxide , Water Pollutants, Chemical/chemistry , Water Purification/methods
15.
Environ Res ; 168: 96-108, 2019 01.
Article in English | MEDLINE | ID: mdl-30296641

ABSTRACT

To effectively remove gaseous pollutants from air using sorbents, a thorough knowledge of the actual sorption performance is needed at ambient conditions rather than at unrealistically high-pressure conditions, as is commonly presented in the literature. To this end, the sorbent capacities of gaseous benzene were evaluated at a constant sorbent bed inlet pressure (50 ppm or ~5 Pa) in 1 atm of N2, room temperature (298 K), a fixed flow rate (50 mL min-1), and equal outlet sampling intervals (5 min). The benzene adsorption patterns were investigated against six sorbent types in a total of 17 different forms: 1- zeolite in five forms: beads (ZB), ground to 212 µm (ZG212), beads ground to 300 µm (ZG300), coarsely ground/washed zeolite (ZWc), and coarsely ground/washed/thermally treated zeolite (ZTc), 2- activated carbon in two forms: 212 µm (ACd212) and granular (ACdg), 3- Carbopack-X (CX), 4- Tenax TA (TA), 5- used black tea leaves of 150 or 300 µm in three forms: dry (TD150/TD300), wet (TW150/TW300), and wet dust (TWd), and 6- used ground coffee in either dry (CD) or wet forms (CW). Accordingly, the largest adsorption capacities at 5 Pa (e.g., >10 mg g-1) were observed for ACd212 (79.1) and ACdg (73.6). Moderate values (e.g., 5 < < 10 mg g-1) were obtained for ZG212 (7.98), CX (6.79), ZG300 (5.70), and ZB (5.58), while the remainder were far lower at < 5 mg g-1 (e.g., tea leaves, ground coffee, TA, ZWc, and ZTc). The experimental benzene capacities of the tested sorbents were further assessed by the Langmuir, Henry's law, Freundlich, Dubinin-Radushkevich, and Elovich isotherm models. The linearized Langmuir adsorption isotherms of ACd212, ACdg, and CX showed the presence of more than one adsorption site (i.e., retrograde at the lowest pressures and two others at higher pressures). However, TA, zeolite, tea leaves, and ground coffee exhibited a type-V isotherm, wherein the sorption capacity continued to increase with loaded volume (i.e., multilayer adsorption). Thus, ACd212 has the best figure-of-merit based on a high 10% breakthrough volume (BTV) and low cost for real-world applications.


Subject(s)
Adsorption , Air Pollutants , Benzene , Air Pollutants/chemistry , Benzene/chemistry , Hydrogen-Ion Concentration , Kinetics , Tea/chemistry , Temperature
16.
J Control Release ; 285: 81-95, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30008373

ABSTRACT

The use of fragrances is often essential to create an elegant, welcoming, or exhilarating environment. Through encapsulation, the release and delivery of fragrances are customized in many consumer products. For such purposes, cost-effective techniques have been developed and employed with the use of various polymers and porous organic materials to efficiently impart fragrances to foods and various other consumer products. After entrapment or uptake/storage of fragrant molecules within a polymeric complex, the properties can be investigated by automated thermal desorption (ATD) analysis. For efficient delivery, fragrances are adsorbed (or entrapped) in some media (e.g., fabric or paper). The release of such entrapped fragrances usually is achieved by spraying. Fragrances can be also loaded in a media by purging aroma gases or by adding fragrance essence directly into a liquid medium. Porous materials, such as zeolites, have been traditionally used for air purification as well as in cosmetics and similar applications. Similarly, other polymeric porous complexes have also been used in fragrance delivery as a templating agent for aromatherapy textiles. Such polymeric materials offer an advantage in terms of development of new hybrid blends via homogenous mixing of two or more matrices. Such blends may possess different desirable physical properties as encapsulants. This review article is aimed at presenting an overview of polymers and their complexes as the main media of fragrance encapsulation. This study also discusses the expansion and future application of porous materials as host matrices for fragrances.


Subject(s)
Drug Carriers/chemistry , Drug Compounding/methods , Excipients/chemistry , Perfume/administration & dosage , Polymers/chemistry , Animals , Aromatherapy , Biocompatible Materials/chemistry , Capsules/chemistry , Cosmetics/administration & dosage , Humans , Odorants/analysis , Porosity , Textiles/analysis
17.
J Hazard Mater ; 346: 62-72, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29247955

ABSTRACT

Recently, concerns have been raised regarding the ultimate fate of silver nanoparticles (SNPs) after their release into the environment. In this study, the environmental feasibility of plant leaf (Thuja occidentalis) extract-mediated green SNPs (GSNPs) was assessed in terms of their effects on soil physicochemical properties and crop growth in comparison to conventionally synthesized silver nanoparticles (CSNPs). Upon application of GSNPs, soil pH shifted toward neutrality, and substantial increments were observed in water holding capacity (WHC), cation exchange capacity (CEC), and N/P availability. The mechanism behind the enhanced availability of N was verified through lab-scale experiments in which GSNP-treated soils efficiently resisted nitrate leaching, thereby sustaining N availability in root zone soil layers. However, retardation in nutrient availability and enzyme activity was apparent in soils treated with 100 mg kg-1 of either CSNPs or GSNPs. Remarkable improvements in leaf area index (LAI), leaf number, chlorophyll content, nitrate reductase (NR) activity, and Phaseolus vulgaris pod yield were observed after the application of low doses of GSNPs (25-50 mg kg-1). The true benefit of GSNP application to soil was substantiated through experiments on plant uptake of nutrients, NR expression, and ferredoxin gene expression in P. vulgaris leaves.


Subject(s)
Metal Nanoparticles/administration & dosage , Phaseolus/drug effects , Plant Extracts , Silver/pharmacology , Thuja , Bacteria/growth & development , Ferredoxins/genetics , Gene Expression Regulation, Plant/drug effects , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Nitrate Reductase/metabolism , Nitrogen/metabolism , Phaseolus/genetics , Phaseolus/growth & development , Phaseolus/metabolism , Plant Leaves , Soil/chemistry , Soil Microbiology
18.
J Pharm Pharmacol ; 69(2): 143-150, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28033667

ABSTRACT

OBJECTIVES: Present modalities for the diagnosis and treatment of diabetes still suffer from certain limitations such as erratic absorption, need of high dose, poor sensitivity or specificity, resistance, substantial morbidity and mortality, long-term complications, and patient-to-patient variability with lifetime treatment. METHODS: This study focused on the development of a water-in-oil-in-water metformin nanoemulsion as an effective method in diabetes treatment. As a Biopharmaceutics Classification System (BCS) class III drug, metformin is hydrophilic in nature with high solubility and poor absorption characteristics. To simultaneously facilitate gastrointestinal absorption and intestinal permeability, metformin was loaded into alginate nanocapsules prepared by an emulsion cross-linking technology. KEY FINDINGS: These prepared metformin-loaded alginate nanoparticles (MLANs) were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and photon correlation spectroscopy (PCS)-based particle size analysis. CONCLUSIONS: The drug loading and encapsulation efficiency in MLANs were 3.12 mg (the amount of metformin added in 100 mg of nanoparticles) and 78%, respectively. The results of in-vitro drug release studies and in-vivo efficacy tests (using animal models) demonstrated enhanced efficiency and response of MLANs relative to pure metformin. The efficacy of MLANs (46.8 mg/kg) was overall about three times higher than that of pure metformin150 mg/kg.


Subject(s)
Alginates/chemistry , Drug Liberation , Metformin/pharmacokinetics , Metformin/therapeutic use , Nanoparticles/chemistry , Animals , Blood Glucose/drug effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/therapeutic use , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Drug Carriers/chemistry , Emulsions/chemistry , Female , Glucose Tolerance Test , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Male , Metformin/chemistry , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Nanoparticles/ultrastructure , Particle Size , Rats
19.
Bioresour Technol ; 180: 230-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25616236

ABSTRACT

Information on vermicomposting with Metaphire posthuma is scanty. This paper, therefore, aims to evaluate the bioconversion efficiency of this species against Eiseniafetida. For comparative analysis, different combinations of municipal solid waste (MSW) and cow dung were used as substrates. The contents of total N and availability of P, K, and Fe increased significantly in both Metaphire and Eisenia systems which was accompanied by substantial reduction in pH and total organic C. Both species exhibited similar levels of urease activity and microbial respiration. Moreover, bioavailability of heavy metals (Pb, Zn, Mn, and Cu) was reduced substantially during vermicomposting, irrespective of the earthworm species. In contrast, each species was distinguished by the enhancement either in microbial biomass C and phosphatase activity (Eisenia) or in humification and fulvic/humic acid C (Metaphire). The overall results suggest that indigenous earthworm, M.posthuma could be utilized as a successful candidate for bioprocessing of toxic wastes.


Subject(s)
Metals, Heavy/metabolism , Oligochaeta/metabolism , Refuse Disposal/methods , Animals , Biodegradation, Environmental , Biological Availability , Biomass , Cattle , Humic Substances , Hydrogen-Ion Concentration , Manure/microbiology , Metals, Heavy/pharmacokinetics , Nitrogen/pharmacokinetics , Phosphoric Monoester Hydrolases/metabolism , Phosphorus/pharmacokinetics , Potassium/pharmacokinetics , Soil , Urease/metabolism
20.
Chemosphere ; 87(5): 557-65, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22277882

ABSTRACT

As a basic means to control odorants released from a landfill leachate treatment station (LLTS), effluents venting from this station were treated via incineration with methane rich landfill gas (at 750°C). A list of the key offensive odorants covering 22 chemicals was measured by collecting those gas samples both before and after the treatment. Upon incineration, the concentration levels of most odorants decreased drastically below threshold levels. The sum of odorant intensities (SOIs), if compared between before and after incineration, decreased from 6.94 (intolerable level) to 3.45 (distinct level). The results indicate that the thermal incineration method can be used as a highly efficient tool to remove most common odorants (e.g., reduced sulfur species), while it is not so for certain volatile species (e.g., carbonyls, fatty acids, etc.).


Subject(s)
Air Pollutants/chemistry , Incineration , Odorants/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Methane/analysis , Methane/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL