Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Radiology ; 285(1): 250-260, 2017 10.
Article in English | MEDLINE | ID: mdl-28510483

ABSTRACT

Purpose To evaluate whether bronchoscopic lung volume reduction (BLVR) increases ventilation and therefore improves ventilation-perfusion (V/Q) mismatch. Materials and Methods All patients provided written informed consent to be included in this study, which was approved by the Institutional Review Board (2013-0368) of Asan Medical Center. The physiologic changes that occurred after BLVR were measured by using xenon-enhanced ventilation and iodine-enhanced perfusion dual-energy computed tomography (CT). Patients with severe emphysema plus hyperinflation who did not respond to usual treatments were eligible. Pulmonary function tests, the 6-minute walking distance (6MWD) test, quality of life assessment, and dual-energy CT were performed at baseline and 3 months after BLVR. The effect of BLVR was assessed with repeated-measures analysis of variance. Results Twenty-one patients were enrolled in this study (median age, 68 years; mean forced expiratory volume in 1 second [FEV1], 0.75 L ± 0.29). After BLVR, FEV1 (P < .001) and 6MWD (P = .002) improved significantly. Despite the reduction in lung volume (-0.39 L ± 0.44), both ventilation per voxel (P < .001) and total ventilation (P = .01) improved after BLVR. However, neither perfusion per voxel (P = .16) nor total perfusion changed significantly (P = .49). Patients with lung volume reduction of 50% or greater had significantly better improvement in FEV1 (P = .02) and ventilation per voxel (P = .03) than patients with lung volume reduction of less than 50%. V/Q mismatch also improved after BLVR (P = .005), mainly owing to the improvement in ventilation. Conclusion The dual-energy CT analyses showed that BLVR improved ventilation and V/Q mismatch. This increased lung efficiency may be the primary mechanism of improvement after BLVR, despite the reduction in lung volume. © RSNA, 2017 Online supplemental material is available for this article.


Subject(s)
Bronchoscopy , Forced Expiratory Volume/physiology , Pneumonectomy , Tomography, X-Ray Computed/methods , Aged , Bronchoscopy/adverse effects , Bronchoscopy/methods , Bronchoscopy/statistics & numerical data , Emphysema/surgery , Female , Humans , Iodine/therapeutic use , Lung/diagnostic imaging , Lung/physiopathology , Lung/surgery , Male , Middle Aged , Perfusion Imaging , Pneumonectomy/adverse effects , Pneumonectomy/statistics & numerical data , Quality of Life , Xenon/therapeutic use
2.
Acta Radiol ; 58(9): 1045-1053, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28273738

ABSTRACT

Background With the introduction of targeted therapies, there has been a growing need for non-invasive imaging methods which accurately evaluate therapeutic effects and overcome the limitations of tumor size-based therapeutic response assessments. Purpose To assess diagnostic values of intra-voxel incoherent motion (IVIM) imaging in evaluating therapeutic effects of sorafenib on hepatocellular carcinoma (HCC) using mouse xenograft model. Material and Methods Twenty-four mice bearing Huh-7 were divided into a control group and two treatment groups received sorafenib doses of 5 mg/kg (5 mg-Tx) or 30 mg/kg (30 mg-Tx). IVIM imaging was performed using 10 b-values (0-900 s/mm2). The apparent diffusion coefficient (ADC), diffusion coefficient ( D), and perfusion fraction ( f) were measured for whole tumors and tumor periphery. Changes between baseline and post-treatment parameters ( Δ ADC, Δ D, and Δ f) were calculated, and these parameters were compared with microvessel density (MVD) and area of tumor cell death. Results The post-treatment f and Δ f for tumor periphery were significantly higher in control group, followed by 5 mg-Tx and 30 mg-Tx ( P < 0.001). MVD showed significant positive correlation with post-treatment f ( r = 0.584, P = 0.003) and negative correlation with D ( r = -0.495, P = 0.014) for tumor periphery, while no parameter showed significant correlation with area of tumor cell death. Conclusion The f is significantly correlated with MVD of HCC, and could potentially be used to evaluate the anti-angiogenic effects of sorafenib.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Diffusion Magnetic Resonance Imaging/methods , Liver Neoplasms, Experimental/diagnostic imaging , Liver Neoplasms, Experimental/drug therapy , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Animals , Disease Models, Animal , Heterografts , Male , Mice , Mice, Inbred BALB C , Niacinamide/pharmacology , Sorafenib
SELECTION OF CITATIONS
SEARCH DETAIL