Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130571, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467226

ABSTRACT

Nanocatalysts tend to aggregate and are difficult to recycle, limiting their practical applications. In this study, an environmentally friendly method was developed to produce cellulose beads for use as supporting materials for Cu-based nanocatalysts. Cellulose beads were synthesized from a water-in-oil emulsion using cellulose dissolved in an LiBr solution as the water phase and vegetable oil as the oil phase. Upon cooling, the gelation of the cellulose solution produced spherical cellulose beads, which were then oxidized to introduce surface carboxyl groups. These beads (diameter: 95-105 µm; specific surface area: 165-225 m2 g-1) have a three-dimensional network of nanofibers (width: 20-30 nm). Furthermore, the Cu2O nanoparticles were loaded onto oxidized cellulose beads before testing their catalytic activity in the reduction of 4-nitrophenol using NaBH4. The apparent reaction rate constant increased with increasing loading of Cu2O nanoparticles and the conversion efficiency was >90 %. The turnover frequency was 376.2 h-1 for the oxidized cellulose beads with the lowest Cu2O loading, indicating a higher catalytic activity compared to those of other Cu-based nanoparticle-loaded materials. In addition to their high catalytic activity, the cellulose beads are reusable and exhibit excellent stability.


Subject(s)
Cellulose, Oxidized , Nanoparticles , Cellulose , Emulsions , Plant Oils , Water
2.
J Agric Food Chem ; 63(23): 5612-21, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25993315

ABSTRACT

Pancreatic islets (PIs) are damaged under diabetic conditions, resulting in decreased PI size. This study examined the regenerative effects of coffee and its components (caffeine, CFI; trigonelline, TRG; chlorogenic acid, CGA) on zebrafish larval PIs and ß-cells damaged by administration of alloxan (AX). In addition, the influence of coffee and its active components on KATP channels was investigated using diazoxide (DZ) as a KATP channel activator. PI size and fluorescence intensity were significantly increased in the coffee-treated group relative to the no-treatment group (P < 0.0001). In addition, coffee exerted significant regenerative effects on pancreatic ß-cells (p = 0.006). Treatment with TRG and CGA rescued PI damage, and the combination of TRG/CGA had a synergistic effect. In conclusion, the results indicate that coffee has beneficial effects on AX-damaged PIs and may also be useful as a blocker of pancreatic ß-cell K(+) channels.


Subject(s)
Coffea/chemistry , Coffee/chemistry , Insulin/metabolism , Islets of Langerhans/drug effects , KATP Channels/antagonists & inhibitors , Plant Extracts/pharmacology , Alkaloids/pharmacology , Alloxan/adverse effects , Animals , Caffeine/pharmacology , Chlorogenic Acid/pharmacology , Drug Synergism , Islets of Langerhans/injuries , Islets of Langerhans/metabolism , KATP Channels/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL