Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Chem ; 134: 106466, 2023 05.
Article in English | MEDLINE | ID: mdl-36934691

ABSTRACT

Actinidia polygama has been used as a traditional medicine for treating various diseases. In the present study, 13 compounds, including three new monoterpenoids (1-3), were isolated from the leaves of A. polygama to investigate the bioactive constituents of the plant. The structures were characterized by analyzing spectroscopic and chiroptical data. These compounds were preliminarily screened for their ability to increase insulin secretion levels after glucose stimulation. Of these, 3-O-coumaroylmaslinic acid (4) and jacoumaric acid (5) showed activity. In further biological studies, these compounds exhibited increased glucose-stimulated insulin secretion (GSIS) activity without cytotoxicity in rat INS-1 pancreatic ß-cells as well as α-glucosidase inhibitory activity. Furthermore, both compounds increased insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), pancreatic and duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression. Hence, these compounds may be developed as potential antidiabetic agents.


Subject(s)
Actinidia , alpha-Glucosidases , Rats , Animals , Insulin Secretion , alpha-Glucosidases/metabolism , Actinidia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glucose/metabolism , Insulin/metabolism
2.
Phytomedicine ; 103: 154209, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35689901

ABSTRACT

BACKGROUND: Leaky gut symptoms and inflammatory bowel disease (IBD) are associated with damaged intestinal mucosa, intestinal permeability dysfunction by epithelial cell cytoskeleton contraction, disrupted intercellular tight junction (TJ) protein expression, and abnormal immune responses and are intractable diseases. PURPOSE: We evaluated the effects of schisandrin C, a dibenzocyclooctadiene lignan from Schisandra chinensis, on intestinal inflammation and permeability dysfunction in gut mimetic systems: cultured intestinal cells, intestinal organoids, and a Caenorhabditis elegans model. METHODS: Schisandrin C was selected from 9 lignan compounds from S. chinensis based on its anti-inflammatory effects in HT-29 human intestinal cells. IL-1ß and Pseudomonas aeruginosa supernatants were used to disrupt intestinal barrier formation in vitro and in C. elegans, respectively. The effects of schisandrin C on transepithelial electrical resistance (TEER) and intestinal permeability were evaluated in intestinal cell monolayers, and its effect on intestinal permeability dysfunction was tested in mouse intestinal organoids and C. elegans by measuring fluorescein isothiocyanate (FITC)-dextran efflux. The effect of schisandrin C on TJ protein expression was investigated by western blotting and fluorescence microscopy. The signaling pathway underlying these effects was also elucidated. RESULTS: Schisandrin C ameliorated intestinal permeability dysfunction in three IBD model systems and enhanced epithelial barrier formation via upregulation of ZO-1 and occludin in intestinal cell monolayers and intestinal organoids. In Caco-2 cells, schisandrin C restored IL-1ß-mediated increases in MLCK and p-MLC expression, in turn blocking cytoskeletal contraction and subsequent intestinal permeabilization. Schisandrin C inhibited NF-ĸB and p38 MAPK signaling, which regulates MLCK expression and structural reorganization of the TJ complex in Caco-2 cells. Schisandrin C significantly improved abnormal FITC-dextran permeabilization in both intestinal organoids and C. elegans. CONCLUSION: Schisandrin C significantly improves abnormal intestinal permeability and regulates the expression of TJ proteins, long MLCK, p-MLC, and inflammation-related proteins, which are closely related to leaky gut symptoms and IBD development. Therefore, schisandrin C is a candidate to treat leaky gut symptoms and IBDs.


Subject(s)
Inflammatory Bowel Diseases , Lignans , Animals , Caco-2 Cells , Caenorhabditis elegans/metabolism , Cyclooctanes , Humans , Inflammation/metabolism , Inflammatory Bowel Diseases/drug therapy , Intestinal Mucosa/metabolism , Lignans/pharmacology , Mice , Myosin-Light-Chain Kinase/metabolism , Organoids/metabolism , Permeability , Polycyclic Compounds , Tight Junction Proteins/metabolism , Tight Junctions
3.
Oncotarget ; 8(24): 39367-39381, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28455965

ABSTRACT

Individualizing adjuvant chemotherapy is important in patients with advanced colorectal cancers (CRCs), and the ability to identify molecular subtypes predictive of good prognosis for stage III CRCs after adjuvant chemotherapy could be highly beneficial. We performed microarray-based gene expression analysis on 101 fresh-frozen primary samples from patients with stage III CRCs treated with FOLFOX adjuvant chemotherapy and 35 matched non-neoplastic mucosal tissues. CRC samples were classified into four molecular subtypes using nonnegative matrix factorization, and for comparison, we also grouped CRC samples using the proposed consensus molecular subtypes (CMSs). Of the 101 cases, 80 were classified into a CMS group, which shows a 79% correlation between the CMS classification and our four molecular subtypes. We found that two of our subtypes showed significantly higher disease-free survival and overall survival than the others. Group 2, in particular, which showed no disease recurrence or death, was characterized by high microsatellite instability (MSI-H, 6/21), abundant mucin production (12/21), and right-sided location (12/21); this group strongly correlated with CMS1 (microsatellite instability immune type). We further identified the molecular characteristics of each group and selected 10 potential biomarker genes from each. When these were compared to the previously reported molecular classifier genes, we found that 31 out of 40 selected genes were matched with those previously reported. Our findings indicate that molecular classification can reveal specific molecular subtypes correlating with clinicopathologic features of CRCs and can have predictive value for the prognosis for stage III CRCs with FOLFOX adjuvant chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Chemotherapy, Adjuvant , Cluster Analysis , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Computational Biology , Female , Fluorouracil/adverse effects , Fluorouracil/therapeutic use , Gene Expression Profiling , Humans , Leucovorin/adverse effects , Leucovorin/therapeutic use , Male , Middle Aged , Neoplasm Staging , Organoplatinum Compounds/adverse effects , Organoplatinum Compounds/therapeutic use , Prognosis , Survival Analysis , Transcriptome , Treatment Outcome
4.
Int J Hyperthermia ; 27(5): 445-52, 2011.
Article in English | MEDLINE | ID: mdl-21756042

ABSTRACT

PURPOSE: Hyperthermia-induced apoptosis is mediated by mitochondrial pathway, and is temporally correlated with alterations in mitochondrial morphology in neuroepithelial cells. In addition, regular exercise up-regulates heat shock proteins (HSPs) that inhibit apoptosis. However, embryo-protective effects of maternal exercise against heat exposure during pregnancy have not been fully understood yet. MATERIALS AND METHODS: To investigate the role of maternal exercise in protecting embryos from hyperthermia, we measured apoptosis-related factors and HSPs in Hsp70 knockout mouse embryos. Pregnant mice were divided into control, exercise, hyperthermia-after-exercise, and hyperthermia groups. Where appropriate the swimming exercise was performed for 5-10 min/day from embryonic day (ED) 1 to ED 8, and hyperthermia (43°C, 5 min) was induced on ED 8. To characterise the effects of maternal exercise on apoptosis-related factors and HSPs, we performed western blotting and transmission electron microscopy. RESULTS: Caspase-9, -7, -3 and Bax were down-regulated in the hyperthermia-after-exercise group and Bcl-2, Hsp27 and Hsp110 were up-regulated. The number of apoptotic cells was markedly reduced in the hyperthermia-after-exercise group. CONCLUSIONS: Maternal exercise plays an important role in inhibiting apoptotic cell death in embryos against hyperthermic exposure during pregnancy.


Subject(s)
Apoptosis/physiology , Brain/embryology , Heat-Shock Proteins/biosynthesis , Hyperthermia, Induced , Motor Activity , Swimming , Animals , Caspases/biosynthesis , Female , HSP110 Heat-Shock Proteins/biosynthesis , HSP27 Heat-Shock Proteins/biosynthesis , HSP70 Heat-Shock Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , bcl-2-Associated X Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL