Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 13(1): 14612, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670021

ABSTRACT

This study aimed to assess the impact of a commercial blend of functional oils, specifically cashew nutshell liquid and castor oil (FO), in two physical forms (solid: P; liquid: S), in comparison to a combination of virginiamycin and anticoccidials on the gut health of broilers challenged with coccidiosis. A total of 1760 1-day-old male chicks were randomly distributed in a study design with eight treatments. The treatments included: a control group (without additive), OFS_0.75_kg/t (FO spray), OFP_1.0_kg/t (FO powder), OFP_1.5_kg/t (FO liquid spray), Sal (anticoccidials), Sal_Vir (virginiamycin and anticoccidials), Sal_OFS_0.5_ kg/t (anticoccidials plus FO spray), and Sal_OFP_1.0_kg/t (anticoccidials plus FO powder). All birds were challenged with Eimeria spp. at 14 days. The physical form of FO did not affect performance and intestinal health parameters. At 42 days, broilers from the control and OFS_0.75 treatments were the lightest, while those from the Sal_Vir and Sal_OFP_1.0 treatments were the heaviest (P < 0.05). FO reduced the presence of Clostridium perfringens. The individual phytogenic additives did not prevent weight loss in birds challenged with Eimeria, but they mitigated the effects of the infection by modulating the intestinal microbiota. A synergistic effect was observed between the FO and anticoccidials, yielding satisfactory results in substituting virginiamycin.


Subject(s)
Chickens , Eimeria , Male , Animals , Powders , Castor Oil , Virginiamycin
2.
Poult Sci ; 96(11): 3920-3927, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29050420

ABSTRACT

A study was conducted to investigate Fe requirements of broiler breeders. One-hundred-fifty-six Cobb 500 broiler breeder hens were individually placed in electrostatically painted cages at 22 weeks. The study was composed of an adaptation phase, in which hens were fed corn-soy-wheat bran diets until 35 wks. An Fe deficient mash diet (24.6 ppm Fe) was provided from 35 to 46 wk in order to induce a partial body Fe depletion. A production phase followed from 47 to 70 wk when hens were fed 6 diets with increasing Fe sulfate supplementation, which, upon analyses had 24.6, 48.6, 74.3, 99.6, 125.6, and 148.2 ppm Fe. Thirty hatching eggs from each treatment were randomly collected in the last wk of each production period and incubated. Hemoglobin and hematocrit were analyzed from 6 hens as well as all hatched chicks per treatment. Analyses of production and hatching data were conducted using quadratic polynomial (QP), broken-line (BL), and exponential asymptotic (EA) models. Effects of dietary Fe were observed for total eggs and total hatching eggs, egg yolk Fe content, and hen and chick hematocrit and hemoglobin (P < 0.05). These responses to added Fe were optimized when dietary Fe were 96.8, 97.1, 130.6, 122.6, 120.0, and 125.0 ppm (QP) and 76.4, 89.3, 135.0, 128.4, 133.8, and 95.0 ppm (BL) for total hatching eggs, egg yolk Fe content, and hen and chick hematocrit and hemoglobin, respectively. Optimization with the EA model was obtained for total hatching eggs, egg yolk Fe, and hen and chick hemoglobin at 97.9, 111.0, 77.9, and 96.3 ppm Fe for total hatching eggs, egg yolk Fe, and hen and chick hemoglobin, respectively. Adequate Fe levels are needed to maintain egg production as well as hatching chicks' indexes. Fe concentration in the yolk and diet are positively influenced. The average of all Fe requirement estimates obtained in the present study was 106 ppm total Fe, whereas averaged values for BL, QP, and EA models were 107, 113, and 97 ppm Fe, respectively.


Subject(s)
Animal Feed/analysis , Chickens/physiology , Egg Yolk/chemistry , Iron/metabolism , Reproduction , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn/physiology , Diet/veterinary , Female , Iron/blood
3.
PLoS One ; 12(6): e0179665, 2017.
Article in English | MEDLINE | ID: mdl-28636626

ABSTRACT

Three experiments were conducted separately to estimate the digestible Lys (dig. Lys) requirements of Cobb × Cobb 500 male broilers using different statistical models. For each experiment, 1,200 chicks were housed in 48 floor pens in a completely randomized design with 6 treatments and 8 replicates. Broilers were fed diets with increasing dig. Lys levels from 1 to 12 d (Exp. 1), from 12 to 28 d (Exp. 2), and 28 to 42 d (Exp. 3). Increasing dig. Lys levels were equally spaced from 0.97 to 1.37% in Exp. 1, 0.77 to 1.17% in Exp. 2, and 0.68 to 1.07% in Exp. 3. The lowest dig. Lys diets were not supplemented with L-Lysine and all other essential AA met or exceeded recommendations. In Exp. 3, six birds per pen were randomly selected from each replication to evaluate carcass and breast yields. Digestible Lys requirements were estimated by quadratic polynomial (QP), linear broken-line (LBL), quadratic broken-line (QBL), and exponential asymptotic (EA) models. Overall, dig. Lys requirements varied among response variables and statistical models. Increasing dietary dig. Lys had a positive effect on BW, carcass and breast yields. Levels of dig. Lys that optimized performance using QP, LBL, QBL, and EA models were 1.207, 1.036, 1.113, and 1.204% for BWG and 1.190, 1.027, 1.100, and 1.172% for FCR in Exp. 1; 1.019, 0.853, 0.944; 1.025% for BWG and 1.050, 0.879, 1.032, and 1.167% for FCR in Exp. 2; and 0.960, 0.835, 0.933, and 1.077% for BWG, 0.981, 0.857, 0.963, and 1.146% for FCR in Exp. 3. The QP, LBL, QBL, and EA also estimated dig. Lys requirements as 0.941, 0.846, 0.925, and 1.070% for breast meat yield in Exp. 3. In conclusion, Lys requirements vary greatly according to the statistical analysis utilized; therefore, the origin of requirement estimation must be taken into account in order to allow adequate comparisons between references.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens/growth & development , Lysine/metabolism , Nutritional Requirements , Animal Feed , Animals , Chickens/physiology , Female , Male , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL