Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biomed Rep ; 4(1): 33-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26870330

ABSTRACT

The effect of mead acid (MA; 5,8,11-eicosatrienoic acid) on the suppression of the development and growth of N-methyl-N-nitrosourea (MNU)-induced mammary cancer in female Sprague-Dawley rats was examined. The MA diet (2.4% MA) or control (CTR) diet (0% MA) was started at 6 weeks of age, MNU was injected intraperitoneally at 7 weeks of age, and the rats were maintained on the respective diets for the whole experimental period (until 19 weeks of age). All induced mammary tumors were luminal A subtype carcinomas (estrogen and progesterone receptor positive and HER2/neu negative). The MA diet significantly suppressed the initiation and promotion phases of mammary carcinogenesis; MA suppressed the development (incidence, 61.5 vs. 100%; multiplicity, 2.1 vs. 4.5) and the growth (final tumor weight, 427.1 vs. 1,796.3 mg) of mammary cancers by suppressing cell proliferation, but not by accelerating cell death. There were evident changes in the major fatty acid composition of n-3, n-6, and n-9 fatty acids in the serum of the MA diet group; there was a significant increase in MA and significant decreases in oleic acid (OA), linoleic acid, arachidonic acid and docosahexaenoic acid. In non-tumorous mammary tissue, there was a significant increase in MA and a significant decrease in OA in the MA diet group. The n-6/n-3 ratios in serum and mammary tissue of the MA diet group were significantly decreased. The MA diet suppressed MNU-induced luminal A mammary cancer by lowering cancer cell proliferation. Therefore, MA may be a chemopreventive and chemotherapeutic agent. In addition to hormone therapy, MA supplementation may be a beneficial chemotherapeutic agent for the luminal A subtype of breast cancer.

2.
J Toxicol Pathol ; 28(1): 11-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26023256

ABSTRACT

Fatty acids and their derivatives play a role in the response to ocular disease. Our current study investigated the effects of dietary mead acid (MA, 5,8,11-eicosatrienoic acid) supplementation on N-methyl-N-nitrosourea (MNU)-induced cataract and retinal degeneration in Sprague-Dawley rats. Experiment 1 was designed to inhibit cataract formation, with the dams fed a 2.4% MA or basal (<0.01% MA) diet during lactational periods. On postnatal day 7, male pups received a single intraperitoneal (ip) injection of 50 mg/kg MNU or vehicle. Lens opacity and morphology were examined 7 and 14 days after the MNU injection. Experiment 2 was designed to inhibit retinal degeneration and was performed with female postweaning rats. In this experiment, dams were fed the 2.4% MA or basal diet during the lactational periods. Thereafter, the female pups were continuously fed the same diets during their postweaning periods. On postnatal day 21 (at weaning), pups received a single ip injection of 50 mg/kg MNU. Retinal morphology was examined 7 days after the MNU injection. In experiment 3, six-week-old female rats were fed the 2.4% MA or basal diet starting at one week before the MNU injection and were then continuously fed the same diets until sacrifice. Rats at 7 weeks of age were given a single ip injection of 40 mg/kg MNU, and the retina was then examined morphologically one week after the MNU injection. In experiment 1, mature cataract was found in all of the MNU-treated groups, with or without MA supplementation. In experiments 2 and 3, atrophy of both the peripheral and central outer retina occurred in all rats exposed to MNU, with or without MA supplementation, respectively. The severities of the cataracts and retinal atrophy in the rats were similar regardless of MA supplementation. Dietary mead acid, which is used as a substitute in essential fatty acid deficiency in the body, does not modify MNU-induced cataract and retinal degeneration in rat models.

3.
Graefes Arch Clin Exp Ophthalmol ; 252(9): 1377-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25012920

ABSTRACT

BACKGROUND: Retinitis pigmentosa (RP) is a group of inherited neurodegenerative human diseases characterized by the loss of photoreceptor cells by apoptosis and eventual blindness. A single intraperitoneal (ip) injection of N-methyl-N-nitrosourea (MNU) causes photoreceptor cell apoptosis within 7 days in rats. Green tea extract (THEA-FLAN 90S; GTE) is a common herbal supplement with pluripotent properties including antioxidant activity. The purpose of the present study was to evaluate the efficacy of GTE against photoreceptor apoptosis in 7-week-old female Sprague-Dawley rats that received a single ip injection of 40 mg/kg MNU. METHODS: The oral administration of 250 mg/kg/day GTE was initiated 3 days prior to MNU injection and continued once daily throughout the experiment. Rats were sacrificed at 12, 24, and 72 h and 7 days after MNU injection, and the eyes were examined morphologically and morphometrically. The photoreceptor cell ratio, retinal damage ratio, and retinal preservation ratio were used to determine the structural and functional alterations. The number of apoptotic photoreceptor cells per mm(2) was determined in situ by TdT-mediated dUTP-digoxigenin nick end labeling (TUNEL). Our results indicated that oral administration of GTE significantly suppressed the loss of photoreceptor cells morphometrically 7 days after MNU injection. The number of TUNEL-positive cells per mm(2) in MNU-exposed rat central retina with or without GTE administration was 981 vs. 2056 at 24 h after MNU injection. CONCLUSIONS: GTE structurally and functionally suppressed MNU-induced photoreceptor cell apoptosis. These findings indicate that GTE may help to ameliorate the onset and progression of human RP.


Subject(s)
Alkylating Agents/toxicity , Apoptosis/drug effects , Methylnitrosourea/toxicity , Photoreceptor Cells, Vertebrate/drug effects , Phytotherapy , Retinal Degeneration/drug therapy , Tea , Administration, Oral , Animals , Catechin/analogs & derivatives , Catechin/blood , Chromatography, Liquid , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Female , In Situ Nick-End Labeling , Injections, Intraperitoneal , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Plant Extracts , Rats , Rats, Sprague-Dawley , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Rhodopsin/metabolism , Tandem Mass Spectrometry
4.
Exp Ther Med ; 6(3): 627-634, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24137238

ABSTRACT

Arachidonic acid (AA) is a fatty acid that is important for visual and brain development and is commonly added as a functional food ingredient to commercial infant formulas worldwide. However, few studies have examined whether AA supplementation during neonatal life has an effect on neuronal abnormalities. In the present study, the effect of dietary AA supplementation in dams during gestation and lactation was investigated by examining N-methyl-N-nitrosourea (MNU)-induced cerebellar hypoplasia in young Lewis rats. Dams were fed a 2.0% AA diet or a basal diet (<0.01% AA). At birth (postnatal day 0), male and female pups received a single intraperitoneal injection of 35 mg/kg MNU or vehicle. Brain weights were measured and a morphological analysis of macroscopic and histological specimens was conducted after 7, 14, 21, 28 and 60 days. Irrespective of whether the rats had been fed an AA diet, the brain weights of the MNU-treated rats, particularly the weights of the cerebellum, were decreased compared with those of the MNU-untreated rats from the 14th day following the MNU injection. Macroscopic reductions in the cerebellar length and/or width and histologically observed reductions in cerebellar vertex height and/or cortex width were also detected in the MNU-treated rats, irrespective of whether the rats had been fed with AA. Histopathologically, the MNU-treated rats (irrespective of AA supplementation) exhibited disorganization of the cerebellar cortex and disarrangement of the cortical layers (loss and/or disturbance of the molecular, Purkinje and granular cell layers). There were no significant differences in any parameters among the MNU-treated rats, irrespective of whether the rats had been fed an AA diet. In conclusion, an AA-rich diet for dams during gestation and lactation did not modify MNU-induced cerebellar hypoplasia in their offspring.

5.
Oncol Lett ; 5(4): 1112-1116, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23599748

ABSTRACT

Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standards of Codex Alimentarius. However, few studies of the possible renal carcinogenic effects of AA supplementation during neonatal life have been performed. The effect of dietary AA supplementation in dams during gestation and lactation was investigated on N-methyl-N-nitrosourea (MNU)-induced preneoplastic lesions in the kidneys of young Lewis rats. Dams were fed a 2.0% AA diet or a basal diet (<0.01% AA). At birth (postnatal day 0), male and female pups received a single intraperitoneal injection of 35 mg/kg MNU or vehicle. Renal morphology was examined after 7, 14, 21, 28 and 60 days. Histopathologically, renal preneoplastic lesions, such as nephroblastomatosis and mesenchymal cell proliferation, were found on day 60 in both the MNU-treated groups. There was no significant difference in lesion incidence of 38% in the basal diet group and 31% in the AA diet group. In conclusion, an AA-rich diet for dams during gestation and lactation does not modify MNU-induced renal preneoplastic lesions in their offspring.

6.
Oncol Lett ; 5(1): 76-82, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23255898

ABSTRACT

Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standard of Codex Alimentarius. However, few studies have been performed that are concerned with the possible carcinogenic effects of AA supplementation during neonatal life. The effect of dietary AA supplementation in dams, during gestation and lactation, was investigated in N-methyl-N-nitrosourea (MNU)-induced preneoplastic lesions in the exocrine pancreas of young Lewis rats. Dams were fed either an AA (2.0% AA) or a basal (<0.01% AA) diet. On postnatal day 0 (at birth), male and female pups received a single intraperitoneal injection of either 35 mg/kg MNU or vehicle. The morphology and proliferating activity of the exocrine pancreas were examined by proliferative cell nuclear antigen immunohistochemistry 7, 14, 21, 28 and/or 60 days post-MNU. Histopathologically, acinar cell hyperplasia (ACH) occurred in the MNU-treated groups 60 days after MNU injection, irrespecitive of whether the rats had been fed an AA diet. Morphometrically, the number and area of ACH per 1 mm(2) in MNU-treated rats increased significantly in the AA diet-fed rats, compared with basal diet-fed rats. The number of proliferative cell nuclear antigen-positive acinar cells in both the normal and hyperplastic areas of MNU-treated rats increased significantly in the AA diet-fed rats. In conclusion, providing dams with an AA-rich diet during gestation and lactation promotes MNU-induced pancreatic ACH in young Lewis rats.

SELECTION OF CITATIONS
SEARCH DETAIL