Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 16(8): e0256693, 2021.
Article in English | MEDLINE | ID: mdl-34437622

ABSTRACT

Induction and augmentation of labor is one of the most common obstetrical interventions. However, this intervention is not free of risks and could cause adverse events, such as hyperactive uterine contraction, uterine rupture, and amniotic-fluid embolism. Our previous study using a new animal model showed that labor induced with high-dose oxytocin (OXT) in pregnant mice resulted in massive cell death in selective brain regions, specifically in male offspring. The affected brain regions included the prefrontal cortex (PFC), but a detailed study in the PFC subregions has not been performed. In this study, we induced labor in mice using high-dose OXT and investigated neonatal brain damage in detail in the PFC using light and electron microscopy. We found that TUNEL-positive or pyknotic nuclei and Iba-1-positive microglial cells were detected more abundantly in infralimbic (IL) and prelimbic (PL) cortex of the ventromedial PFC (vmPFC) in male pups delivered by OXT-induced labor than in the control male pups. These Iba-1-positive microglial cells were engulfing dying cells. Additionally, we also noticed that in the forceps minor (FMI) of the corpus callosum (CC), the number of TUNEL-positive or pyknotic nuclei and Iba-1-positive microglial cells were largely increased and Iba-1-positive microglial cells phagocytosed massive dying cells in male pups delivered by high-dose OXT-induced labor. In conclusion, IL and PL of the vmPFC and FMI of the CC, were susceptible to brain damage in male neonates after high-dose OXT-induced labor.


Subject(s)
Corpus Callosum/pathology , Labor, Induced , Oxytocin/toxicity , Prefrontal Cortex/pathology , Animals , Animals, Newborn , Calcium-Binding Proteins/metabolism , Cell Death , Corpus Callosum/drug effects , Corpus Callosum/ultrastructure , Disease Models, Animal , Female , Limbic System/pathology , Male , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microglia/drug effects , Microglia/pathology , Phagocytosis/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/ultrastructure , Pregnancy , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL