Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Rev Clin Oncol ; 21(1): 67-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38001356

ABSTRACT

The current standard-of-care adjuvant treatment for patients with colorectal cancer (CRC) comprises a fluoropyrimidine (5-fluorouracil or capecitabine) as a single agent or in combination with oxaliplatin, for either 3 or 6 months. Selection of therapy depends on conventional histopathological staging procedures, which constitute a blunt tool for patient stratification. Given the relatively marginal survival benefits that patients can derive from adjuvant treatment, improving the safety of chemotherapy regimens and identifying patients most likely to benefit from them is an area of unmet need. Patient stratification should enable distinguishing those at low risk of recurrence and a high chance of cure by surgery from those at higher risk of recurrence who would derive greater absolute benefits from chemotherapy. To this end, genetic analyses have led to the discovery of germline determinants of toxicity from fluoropyrimidines, the identification of patients at high risk of life-threatening toxicity, and enabling dose modulation to improve safety. Thus far, results from analyses of resected tissue to identify mutational or transcriptomic signatures with value as prognostic biomarkers have been rather disappointing. In the past few years, the application of artificial intelligence-driven models to digital images of resected tissue has identified potentially useful algorithms that stratify patients into distinct prognostic groups. Similarly, liquid biopsy approaches involving measurements of circulating tumour DNA after surgery are additionally useful tools to identify patients at high and low risk of tumour recurrence. In this Perspective, we provide an overview of the current landscape of adjuvant therapy for patients with CRC and discuss how new technologies will enable better personalization of therapy in this setting.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Artificial Intelligence , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemotherapy, Adjuvant/adverse effects , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/etiology , Capecitabine/therapeutic use , Fluorouracil/adverse effects
2.
Lancet ; 395(10221): 350-360, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32007170

ABSTRACT

BACKGROUND: Improved markers of prognosis are needed to stratify patients with early-stage colorectal cancer to refine selection of adjuvant therapy. The aim of the present study was to develop a biomarker of patient outcome after primary colorectal cancer resection by directly analysing scanned conventional haematoxylin and eosin stained sections using deep learning. METHODS: More than 12 000 000 image tiles from patients with a distinctly good or poor disease outcome from four cohorts were used to train a total of ten convolutional neural networks, purpose-built for classifying supersized heterogeneous images. A prognostic biomarker integrating the ten networks was determined using patients with a non-distinct outcome. The marker was tested on 920 patients with slides prepared in the UK, and then independently validated according to a predefined protocol in 1122 patients treated with single-agent capecitabine using slides prepared in Norway. All cohorts included only patients with resectable tumours, and a formalin-fixed, paraffin-embedded tumour tissue block available for analysis. The primary outcome was cancer-specific survival. FINDINGS: 828 patients from four cohorts had a distinct outcome and were used as a training cohort to obtain clear ground truth. 1645 patients had a non-distinct outcome and were used for tuning. The biomarker provided a hazard ratio for poor versus good prognosis of 3·84 (95% CI 2·72-5·43; p<0·0001) in the primary analysis of the validation cohort, and 3·04 (2·07-4·47; p<0·0001) after adjusting for established prognostic markers significant in univariable analyses of the same cohort, which were pN stage, pT stage, lymphatic invasion, and venous vascular invasion. INTERPRETATION: A clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes. FUNDING: The Research Council of Norway.


Subject(s)
Colorectal Neoplasms/diagnosis , Deep Learning , Aged , Biomarkers, Tumor/metabolism , Cohort Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/therapy , Early Detection of Cancer/methods , Eosine Yellowish-(YS)/metabolism , Female , Hematoxylin/metabolism , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL