Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Behav Brain Res ; 405: 113208, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33640395

ABSTRACT

Individuals diagnosed with Fetal Alcohol Spectrum Disorders (FASD) often display behavioral impairments in executive functioning (EF). Specifically, the domains of working memory, inhibition, and set shifting are frequently impacted by prenatal alcohol exposure. Coordination between prefrontal cortex and hippocampus appear to be essential for these domains of executive functioning. The current study uses a rodent model of human third-trimester binge drinking to identify the extent of persistent executive functioning deficits following developmental alcohol by using a behavioral battery of hippocampus- and prefrontal cortex-dependent behavioral assays in adulthood. Alcohol added to milk formula was administered to Long Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol; intragastric intubation), a period when rodent brain development undergoes comparable processes to human third-trimester neurodevelopment. Procedural control animals underwent sham intubation, without administration of any liquids (i.e., alcohol, milk solution). In adulthood, male rats were run on a battery of behavioral assays: novel object recognition, object-in-place associative memory, spontaneous alternation, and behavioral flexibility tasks. Alcohol-exposed rats demonstrated behavioral impairment in object-in-place preference and performed worse when the rule was switched on a plus maze task. All rats showed similar levels of novel object recognition, spontaneous alternation, discrimination learning, and reversal learning, suggesting alcohol-induced behavioral alterations are selective to executive functioning domains of spatial working memory and set-shifting in this widely-utilized rodent model. These specific behavioral alterations support the hypothesis that behavioral impairments in EF following prenatal alcohol exposure are caused by distributed damage to the prefrontal-thalamo-hippocampal circuit consisting of the medial prefrontal cortex, thalamic nucleus reuniens, and CA1 of hippocampus.


Subject(s)
Central Nervous System Depressants/pharmacology , Cognitive Dysfunction , Ethanol/pharmacology , Executive Function , Fetal Alcohol Spectrum Disorders/physiopathology , Hypothalamus , Nerve Net , Prefrontal Cortex , Thalamus , Animals , Animals, Newborn , Behavior, Animal/drug effects , Behavior, Animal/physiology , Binge Drinking/complications , Central Nervous System Depressants/administration & dosage , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Ethanol/administration & dosage , Executive Function/drug effects , Executive Function/physiology , Female , Hypothalamus/drug effects , Hypothalamus/physiopathology , Male , Nerve Net/drug effects , Nerve Net/physiopathology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Pregnancy , Pregnancy Trimester, Third/drug effects , Rats , Rats, Long-Evans , Thalamus/drug effects , Thalamus/physiopathology
2.
Proc Natl Acad Sci U S A ; 94(10): 5395-400, 1997 May 13.
Article in English | MEDLINE | ID: mdl-9144248

ABSTRACT

Local translation of proteins in distal dendrites is thought to support synaptic structural plasticity. We have previously shown that metabotropic glutamate receptor (mGluR1) stimulation initiates a phosphorylation cascade, triggering rapid association of some mRNAs with translation machinery near synapses, and leading to protein synthesis. To determine the identity of these mRNAs, a cDNA library produced from distal nerve processes was used to screen synaptic polyribosome-associated mRNA. We identified mRNA for the fragile X mental retardation protein (FMRP) in these processes by use of synaptic subcellular fractions, termed synaptoneurosomes. We found that this mRNA associates with translational complexes in synaptoneurosomes within 1-2 min after mGluR1 stimulation of this preparation, and we observed increased expression of FMRP after mGluR1 stimulation. In addition, we found that FMRP is associated with polyribosomal complexes in these fractions. In vivo, we observed FMRP immunoreactivity in spines, dendrites, and somata of the developing rat brain, but not in nuclei or axons. We suggest that rapid production of FMRP near synapses in response to activation may be important for normal maturation of synaptic connections.


Subject(s)
Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/chemistry , Neurons/metabolism , Protein Biosynthesis , Synapses/physiology , Amino Acid Sequence , Animals , Antibodies/pharmacology , Antisense Elements (Genetics) , Brain/growth & development , Brain/metabolism , DNA, Complementary , Dendrites/physiology , Dendrites/ultrastructure , Excitatory Amino Acid Antagonists/pharmacology , Fragile X Mental Retardation Protein , Gene Library , Glycine/analogs & derivatives , Glycine/pharmacology , Humans , Kinetics , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Neurotransmitter Agents/physiology , Oligonucleotide Probes , Organ Specificity , Polyribosomes/metabolism , Protein Biosynthesis/drug effects , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Rats , Receptors, Metabotropic Glutamate/physiology , Resorcinols/pharmacology , Sequence Homology, Amino Acid , Synapses/drug effects , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL