Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
N Engl J Med ; 368(7): 610-22, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23406026

ABSTRACT

BACKGROUND: Subthalamic stimulation reduces motor disability and improves quality of life in patients with advanced Parkinson's disease who have severe levodopa-induced motor complications. We hypothesized that neurostimulation would be beneficial at an earlier stage of Parkinson's disease. METHODS: In this 2-year trial, we randomly assigned 251 patients with Parkinson's disease and early motor complications (mean age, 52 years; mean duration of disease, 7.5 years) to undergo neurostimulation plus medical therapy or medical therapy alone. The primary end point was quality of life, as assessed with the use of the Parkinson's Disease Questionnaire (PDQ-39) summary index (with scores ranging from 0 to 100 and higher scores indicating worse function). Major secondary outcomes included parkinsonian motor disability, activities of daily living, levodopa-induced motor complications (as assessed with the use of the Unified Parkinson's Disease Rating Scale, parts III, II, and IV, respectively), and time with good mobility and no dyskinesia. RESULTS: For the primary outcome of quality of life, the mean score for the neurostimulation group improved by 7.8 points, and that for the medical-therapy group worsened by 0.2 points (between-group difference in mean change from baseline to 2 years, 8.0 points; P=0.002). Neurostimulation was superior to medical therapy with respect to motor disability (P<0.001), activities of daily living (P<0.001), levodopa-induced motor complications (P<0.001), and time with good mobility and no dyskinesia (P=0.01). Serious adverse events occurred in 54.8% of the patients in the neurostimulation group and in 44.1% of those in the medical-therapy group. Serious adverse events related to surgical implantation or the neurostimulation device occurred in 17.7% of patients. An expert panel confirmed that medical therapy was consistent with practice guidelines for 96.8% of the patients in the neurostimulation group and for 94.5% of those in the medical-therapy group. CONCLUSIONS: Subthalamic stimulation was superior to medical therapy in patients with Parkinson's disease and early motor complications. (Funded by the German Ministry of Research and others; EARLYSTIM ClinicalTrials.gov number, NCT00354133.).


Subject(s)
Electric Stimulation Therapy , Parkinson Disease/therapy , Quality of Life , Activities of Daily Living , Adult , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Combined Modality Therapy , Dopamine Agonists/adverse effects , Dopamine Agonists/therapeutic use , Dyskinesias/etiology , Electric Stimulation Therapy/adverse effects , Female , Humans , Implantable Neurostimulators/adverse effects , Intention to Treat Analysis , Male , Middle Aged , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Subthalamic Nucleus , Surveys and Questionnaires , Treatment Outcome
2.
Exp Neurol ; 222(1): 144-52, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20051243

ABSTRACT

The cerebellum and the motor thalamus, connected by cerebellothalamic pathways, are traditionally considered part of the motor-control system. Yet, functional imaging studies and clinical studies including patients with cerebellar disease suggest an involvement of the cerebellum in olfaction. Additionally, there are anecdotal clinical reports of olfactory disturbances elicited by electrical stimulation of the motor thalamus and its neighbouring subthalamic region. Deep brain stimulation (DBS) targeting the cerebellothalamic pathways is an effective treatment for essential tremor (ET), which also offers the possibility to explore the involvement of cerebellothalamic pathways in the sense of smell. This may be important for patient care given the increased use of DBS for the treatment of tremor disorders. Therefore, 21 none-medicated patients with ET treated with DBS (13 bilateral, 8 unilateral) were examined with "Sniffin' Sticks," an established and reliable method for olfactory testing. Patients were studied either with DBS switched on and then off or in reversed order. DBS impaired odor threshold and, to a lesser extent, odor discrimination. These effects were sub-clinical as none of the patients reported changes in olfactory function. The findings, however, demonstrate that olfaction can be modulated in a circumscribed area of the posterior (sub-) thalamic region. We propose that the impairment of the odor threshold with DBS is related to effects on an olfacto-motor loop, while disturbed odor discrimination may be related to effects of DBS on short-term memory.


Subject(s)
Cerebellum/physiology , Deep Brain Stimulation/methods , Essential Tremor/physiopathology , Smell/physiology , Thalamus/physiology , Aged , Analysis of Variance , Discrimination, Psychological/physiology , Essential Tremor/therapy , Female , Functional Laterality/physiology , Humans , Magnetic Resonance Imaging/methods , Male , Memory/physiology , Middle Aged , Neural Pathways/physiology , Neuropsychological Tests , Odorants
3.
Am J Cardiol ; 62(15): 16J-27J, 1988 Nov 11.
Article in English | MEDLINE | ID: mdl-3055920

ABSTRACT

Administration of lovastatin to animals at high dosage levels produces a broad spectrum of toxicity. This toxicity is expected based on the critical nature of the target enzyme (HMG CoA reductase) and the magnitude of the dosage levels used. The information reviewed in this paper demonstrates that these adverse findings in animals do not predict significant risk in humans. The reason for this derives from the fact that all the available evidence suggests that the adverse effects observed are produced by an exaggeration of the desired biochemical effect of the drug at high dosage levels. The presence of clear and high no-effect doses for these toxic effects along with the fact that most of the changes observed are clearly mechanism-based (directly attributable to inhibition of mevalonate synthesis) indicate that it is unlikely that similar changes will be observed at the therapeutic dosage levels in humans. This hypothesis is supported by the extensive human safety experience described by Tobert in the following report.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Lovastatin/toxicity , Animals , Cataract/chemically induced , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Liver/drug effects , Lovastatin/administration & dosage , Neoplasms, Experimental/chemically induced , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL