Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
ACS Appl Bio Mater ; 3(4): 2218-2229, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-35025274

ABSTRACT

Nanomaterials combined with phototherapy and multimodal imaging are promising for cancer theranostics. Our aim is to develop fluorescent mesoporous bioglass nanoparticles (fBGn) based on carbon dots (CD) with delivery, triple-mode imaging, and photothermal (PTT) properties for cancer theranostics. A direct and label-free approach was used to prepare multicolor fluorescent fBGn with 3-aminopropyl triethoxysilane as the surface-functionalizing agent. The calcination at 400 °C provided fBGn with high fluorescence intensity originating from the CD. In particular, a triple-mode emission [fluorescence imaging, two-photon (TP), and Raman imaging] was observed which depended on CD nature and surface properties such as surface oxidation edge state, amorphous region, nitrogen passivation of surface state, and crystalline region. The fBGn also exhibited phototherapeutic properties such as photodynamic (PDT) and PTT effects. The antitumor effect of the combined PDT/PTT therapy was significantly higher than that of individual (PDT or PTT) therapy. The fBGn, due to the mesoporous structure, the anticancer drug doxorubicin could be loaded and released in a pH-dependent way to show chemotherapy effects on cancer cells. The in vivo imaging and biocompatibility of fBGn were also demonstrated in a nude mouse model. The fBGn, with the combined capacity of anticancer delivery, triple-mode imaging, and PTT/PDT therapy, are considered to be potentially useful for cancer theranostics.

2.
Invest Ophthalmol Vis Sci ; 58(2): 708-719, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28146236

ABSTRACT

Purpose: Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods: Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results: Apparently functional primary RPE cells, when cultured on 10-µm-thick inserts with 0.4-µm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions: The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.


Subject(s)
Durapatite/metabolism , Epithelial Cells/metabolism , Pigment Epithelium of Eye/metabolism , Retinal Drusen/metabolism , Animals , Disease Models, Animal , Fluorescence , Immunohistochemistry , Macular Degeneration/metabolism , Microscopy, Electron , Pigment Epithelium of Eye/cytology , Primary Cell Culture , Spectrometry, Mass, Secondary Ion , Swine , X-Ray Diffraction
3.
Stem Cells Transl Med ; 4(3): 217-23, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25650438

ABSTRACT

There is a need for physical standards (reference materials) to ensure both reproducibility and consistency in the production of somatic cell types from human pluripotent stem cell (hPSC) sources. We have outlined the need for reference materials (RMs) in relation to the unique properties and concerns surrounding hPSC-derived products and suggest in-house approaches to RM generation relevant to basic research, drug screening, and therapeutic applications. hPSCs have an unparalleled potential as a source of somatic cells for drug screening, disease modeling, and therapeutic application. Undefined variation and product variability after differentiation to the lineage or cell type of interest impede efficient translation and can obscure the evaluation of clinical safety and efficacy. Moreover, in the absence of a consistent population, data generated from in vitro studies could be unreliable and irreproducible. Efforts to devise approaches and tools that facilitate improved consistency of hPSC-derived products, both as development tools and therapeutic products, will aid translation. Standards exist in both written and physical form; however, because many unknown factors persist in the field, premature written standards could inhibit rather than promote innovation and translation. We focused on the derivation of physical standard RMs. We outline the need for RMs and assess the approaches to in-house RM generation for hPSC-derived products, a critical tool for the analysis and control of product variation that can be applied by researchers and developers. We then explore potential routes for the generation of RMs, including both cellular and noncellular materials and novel methods that might provide valuable tools to measure and account for variation. Multiparametric techniques to identify "signatures" for therapeutically relevant cell types, such as neurons and cardiomyocytes that can be derived from hPSCs, would be of significant utility, although physical RMs will be required for clinical purposes.


Subject(s)
Biomedical Research , Drug Evaluation, Preclinical , Pluripotent Stem Cells , Biomedical Research/instrumentation , Biomedical Research/methods , Biomedical Research/standards , Biomedical Research/trends , Drug Evaluation, Preclinical/economics , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Evaluation, Preclinical/trends , Humans , Reference Standards
4.
J Biomater Appl ; 27(1): 79-90, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22532410

ABSTRACT

A rapid and continuous hydrothermal route for the synthesis of nano-sized hydroxyapatite rods co-precipitated with calcium-doped zirconia nanoparticles using a superheated water flow at 450°C and 24.1 MPa as a crystallizing medium is described. Hydroxyapatite and calcium-doped zirconia phases in the powder mixtures could be clearly identified based on particle size and morphology under transmission electron microscopy. Retention of a nanostructure after sintering is crucial to load-bearing applications of hydroxyapatite-based ceramics. Therefore, rapid consolidation of the co-precipitates was investigated using a spark plasma sintering furnace under a range of processing conditions. Samples nominally containing 5 and 10 wt% calcium-doped zirconia and hydroxyapatite made with Ca:P solution molar ratio 2.5 showed excellent thermal stability (investigated using in situ variable temperature X-ray diffraction) and were sintered via spark plasma sintering to >96% sintered densities at 1000°C resulting in hydroxyapatite and calcium-doped zirconia as the only two phases. Mechanical tests of spark plasma sintering sintered samples (containing 10 wt% calcium-doped zirconia) revealed a three-pt flexural strength of 107.7 MPa and Weibull modulus of 9.9. The complementary nature of the spark plasma sintering technique and continuous hydrothermal flow synthesis (which results in retention of a nanostructure even after sintering at elevated temperatures) was hence showcased.


Subject(s)
Durapatite/chemistry , Nanoparticles , Zirconium/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , Powder Diffraction
5.
Acta Biomater ; 2(2): 143-54, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16701872

ABSTRACT

This study reports the relationship between the biocompatibility and surface properties of experimental bone cements. The effect of hydroxyapatite (HA) or alpha-tri-calcium phosphate (alpha-TCP) incorporated into bone cements prepared with methyl methacrylate as base monomer and either methacrylic acid or diethyl amino ethyl methacrylate (DEAEMA) as comonomers was investigated. The in vitro biocompatibility of these composite cements was assessed in terms of the interaction of primary human osteoblasts grown on the materials over a period of 5 days and compared with a control surface. These results were related to the surface properties investigated through a number of techniques, namely Fourier transform infrared, contact angle measurements, X-ray photoelectron spectroscopy and energy dispersive analysis of X-rays. Complementary techniques of thermal analysis and ion chromatography were also performed. Biocompatibility results showed that the addition of alpha-TCP improves biocompatibility regardless of comonomer type. This is in contrast to HA-based cements where cell proliferation was significantly lower. Surface characterisations showed that structural integrity of the materials was maintained in the presence of the acid and base comonomers, and water contact angles were reduced particularly in DEAEMA containing materials. Furthermore, ion chromatography confirmed higher Ca2+ and PO4(3-) ion release by both types of ceramics, particularly for those containing DEAEMA. In conclusion, the incorporation of acidic and basic comonomers to either HA or alpha-TCP ceramics containing bone cements can have differential effects upon the attachment and proliferation of bone cells in vitro. Moreover, those cements consisting of alpha-TCP and containing DEAEMA comonomer indicated the most favourable biocompatibility.


Subject(s)
Bone Cements/chemistry , Osteoblasts/cytology , Biocompatible Materials , Calcium Phosphates , Cell Division , Ceramics , Durapatite , Humans , Methacrylates , Microscopy, Electron, Scanning , Osteoblasts/ultrastructure , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Rays
6.
Dent Mater ; 21(9): 811-22, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15961153

ABSTRACT

OBJECTIVES: The aims of the study were to explore the nucleation and crystallization kinetics of an aluminosilicate glass in K2O-Al2O3-SiO2 system and to characterize it. OBJECTIVES: A starting glass composition of wt%; 64.2% SiO2, 16.1% Al2O3, 10.9% K2O, 4.3% Na2O, 1.7% CaO, 0.5% LiO and 0.4% TiO2 was heated in an electric furnace and later quenched to produce glasses. The glass powders were heat treated using differing heat treatment schedules and quenched. Dta, Xrd, Eds and Sem analyses were used to characterize and explore the crystallization kinetics of the glasses. RESULTS: Phase separation of the glasses was identified and characterized in the glasses. Tetragonal leucite, cubic leucite and sanadine glass-ceramics were produced. Fine leucite crystals (1 microm2) were crystallized with minimal matrix microcracking. SIGNIFICANCE: Amorphous phase separation appeared to be an important precursor to nucleation and crystal growth in the alkali aluminosilicate glasses explored. It was possible to control the crystallization of tetragonal leucite and sanidine phases by selected heat treatment of glass powders and monoliths, resulting in the production of fine grained tetragonal leucite glass-ceramics.


Subject(s)
Aluminum Silicates/chemistry , Glass/chemistry , Aluminum Oxide/chemistry , Calcium Compounds/chemistry , Ceramics/chemistry , Chemical Phenomena , Chemistry, Physical , Crystallization , Differential Thermal Analysis , Electron Probe Microanalysis , Hot Temperature , Humans , Kinetics , Lithium Compounds/chemistry , Materials Testing , Microscopy, Electron, Scanning , Oxides/chemistry , Particle Size , Potassium Compounds/chemistry , Silicon Dioxide/chemistry , Sodium Compounds/chemistry , Titanium/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL