Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Plant Physiol ; 189(1): 344-359, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35166824

ABSTRACT

Pollen fertility is critical for successful fertilization and, accordingly, for crop yield. While sugar unloading affects the growth and development of all types of sink organs, the molecular nature of sugar import to tomato (Solanum lycopersicum) pollen is poorly understood. However, sugar will eventually be exported transporters (SWEETs) have been proposed to be involved in pollen development. Here, reverse transcription-quantitative polymerase chain reaction (PCR) revealed that SlSWEET5b was markedly expressed in flowers when compared to the remaining tomato SlSWEETs, particularly in the stamens of maturing flower buds undergoing mitosis. Distinct accumulation of SlSWEET5b-ß-glucuronidase activities was present in mature flower buds, especially in anther vascular and inner cells, symplasmic isolated microspores (pollen grains), and styles. The demonstration that SlSWEET5b-GFP fusion proteins are located in the plasma membrane supports the idea that the SlSWEET5b carrier functions in apoplasmic sugar translocation during pollen maturation. This is consistent with data from yeast complementation experiments and radiotracer uptake, showing that SlSWEET5b operates as a low-affinity hexose-specific passive facilitator, with a Km of ∼36 mM. Most importantly, RNAi-mediated suppression of SlSWEET5b expression resulted in shrunken nucleus-less pollen cells, impaired germination, and low seed yield. Moreover, stamens from SlSWEET5b-silenced tomato mutants showed significantly lower amounts of sucrose (Suc) and increased invertase activity, indicating reduced carbon supply and perturbed Suc homeostasis in these tissues. Taken together, our findings reveal the essential role of SlSWEET5b in mediating apoplasmic hexose import into phloem unloading cells and into developing pollen cells to support pollen mitosis and maturation in tomato flowers.


Subject(s)
Solanum lycopersicum , Flowers/genetics , Flowers/metabolism , Hexoses/metabolism , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen , Sucrose/metabolism
2.
ACS Appl Mater Interfaces ; 11(27): 23880-23892, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31192580

ABSTRACT

Various natural compounds including epigallocatechin gallate (EGCG) and curcumin (CU) have potential in developing anticancer therapy. However, their clinical use is commonly limited by instability and low tissue distribution. EGCG and CU combined treatment can improve the efficacy with synergistic effects. To improve the synergistic effect and overcome the limitations of low tissue distribution, we applied a dual cancer-targeted nanoparticle system to co-deliver EGCG and CU. Nanoparticles were composed of hyaluronic acid, fucoidan, and poly(ethylene glycol)-gelatin to encapsulate EGCG and CU. Furthermore, a dual targeting system was established with hyaluronic acid and fucoidan, which were used as agents for targeting CD44 on prostate cancer cells and P-selectin in tumor vasculature, respectively. Their effect and efficacy were investigated in prostate cancer cells and a orthotopic prostate tumor model. The EGCG/CU-loaded nanoparticles bound to prostate cancer cells, which were uptaken more into cells, leading to a better anticancer efficiency compared to the EGCG/CU combination solution. In addition, the releases of EGCG and CU were regulated by their pH value that avoided the premature release. In mice, treatment of the cancer-targeted EGCG/CU-loaded nanoparticles significantly attenuated the orthotopic tumor growth without inducing organ injuries. Overall, the dual-targeted nanoparticle system for the co-delivery of EGCG and CU greatly improved its synergistic effect in cancer therapy, indicating its great potential in developing treatments for prostate cancer therapy.


Subject(s)
Catechin/analogs & derivatives , Curcumin , Drug Delivery Systems , Neoplasms, Experimental/drug therapy , Prostatic Neoplasms/drug therapy , Animals , Catechin/chemistry , Catechin/pharmacokinetics , Catechin/pharmacology , Curcumin/pharmacokinetics , Curcumin/pharmacology , Humans , Hyaluronan Receptors/metabolism , Male , Mice , Mice, SCID , Neoplasm Proteins/metabolism , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , P-Selectin/metabolism , PC-3 Cells , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL