Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Metab ; 72: 101711, 2023 06.
Article in English | MEDLINE | ID: mdl-36958422

ABSTRACT

PURPOSE: Heart diseases are the leading cause of death worldwide. Metabolic interventions via ketogenic diets (KDs) have been used for decades to treat epilepsy, and more recently, also diabetes and obesity, as common comorbidities of heart diseases. However, recent reports linked KDs, based on long-chain triglycerides (LCTs), to cardiac fibrosis and a reduction of heart function in rodents. As intervention using medium-chain triglycerides (MCTs) was recently shown to be beneficial in murine cardiac reperfusion injury, the question arises as to what extent the fatty acid (FA)-composition in a KD alters molecular markers of FA-oxidation (FAO) and modulates cardiac fibrotic outcome. METHODS: The effects of LCT-KD as well as an LCT/MCT mix (8:1 ketogenic ratio) on cardiac tissue integrity and the plasma metabolome were assessed in adult male C57/BL6NRJ mice after eight weeks on the respective diet. RESULTS: Both KDs resulted in increased amount of collagen fibers and cardiac tissue was immunologically indistinguishable between groups. MCT supplementation resulted in i) profound changes in plasma metabolome, ii) reduced hydroxymethylglutaryl-CoA synthase upregulation, and mitofusin 2 downregulation, iii) abrogation of LCT-induced mitochondrial enlargement, and iv) enhanced FAO profile. Contrary to literature, mitochondrial biogenesis was unaffected by KDs. We propose that the observed tissue remodeling is caused by the accumulation of 4-hydroxy-2-nonenal protein adducts, despite an inconspicuous nuclear factor (erythroid-derived 2)-like 2 pathway. CONCLUSION: We conclude that regardless of the generally favorable effects of MCTs, they cannot inhibit 4-hydroxy-2-nonenal adduct formation and fibrotic tissue formation in this setting. Furthermore, we support the burgeoning concern about the effect of KDs on the cardiac safety profile.


Subject(s)
Diet, Ketogenic , Heart Diseases , Male , Mice , Animals , Diet, Ketogenic/adverse effects , Diet, Ketogenic/methods , Triglycerides/metabolism , Fatty Acids , Fibrosis
2.
Lasers Med Sci ; 36(3): 599-604, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32583188

ABSTRACT

Low-level laser therapy (LLLT) is used in patients with head and neck cancer (HNC) for treatment-related mucositis. There is conflicting evidence as to whether LLLT leads to the proliferation of tumor cells and whether it interferes with the tumoricidal effect of radiotherapy or chemoradiotherapy, if the tumor lies within the LLLT field. Using fuzzy matching, 126 HNC patients who had received LLLT including the tumor region and 126 matching HNC patients without LLLT (controls) treated at the Department of Otorhinolaryngology, Head & Neck Surgery, Medical University of Innsbruck, were identified. The overall survival was compared using the Kaplan-Meier analysis. Fuzzy matching yielded 2 patient samples well comparable in terms of risk of death. The survival did not significantly differ between patients with and without LLLT (p = 0.18). An increased risk of death in HNC patients who received LLLT covering the tumor region was not observed in our study.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Low-Level Light Therapy , Dose-Response Relationship, Radiation , Female , Humans , Male , Middle Aged , Mucositis/complications
4.
Int J Mol Sci ; 20(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398922

ABSTRACT

The application of ketogenic diet (KD) (high fat/low carbohydrate/adequate protein) as an auxiliary cancer therapy is a field of growing attention. KD provides sufficient energy supply for healthy cells, while possibly impairing energy production in highly glycolytic tumor cells. Moreover, KD regulates insulin and tumor related growth factors (like insulin growth factor-1, IGF-1). In order to provide molecular evidence for the proposed additional inhibition of tumor growth when combining chemotherapy with KD, we applied untargeted quantitative metabolome analysis on a spontaneous breast cancer xenograft mouse model, using MDA-MB-468 cells. Healthy mice and mice bearing breast cancer xenografts and receiving cyclophosphamide chemotherapy were compared after treatment with control diet and KD. Metabolomic profiling was performed on plasma samples, applying high-performance liquid chromatography coupled to tandem mass spectrometry. Statistical analysis revealed metabolic fingerprints comprising numerous significantly regulated features in the group of mice bearing breast cancer. This fingerprint disappeared after treatment with KD, resulting in recovery to the metabolic status observed in healthy mice receiving control diet. Moreover, amino acid metabolism as well as fatty acid transport were found to be affected by both the tumor and the applied KD. Our results provide clear evidence of a significant molecular effect of adjuvant KD in the context of tumor growth inhibition and suggest additional mechanisms of tumor suppression beyond the proposed constrain in energy supply of tumor cells.


Subject(s)
Diet, Ketogenic , Metabolome , Metabolomics , Neoplasms/metabolism , Acetylation , Amino Acids/biosynthesis , Amino Acids/metabolism , Animals , Cell Line, Tumor , Chromatography, High Pressure Liquid , Disease Models, Animal , Fatty Acids/metabolism , Heterografts , Humans , Metabolomics/methods , Mice , Neoplasms/pathology , Tandem Mass Spectrometry
5.
Nat Commun ; 10(1): 903, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796225

ABSTRACT

Converting carcinomas in benign oncocytomas has been suggested as a potential anti-cancer strategy. One of the oncocytoma hallmarks is the lack of respiratory complex I (CI). Here we use genetic ablation of this enzyme to induce indolence in two cancer types, and show this is reversed by allowing the stabilization of Hypoxia Inducible Factor-1 alpha (HIF-1α). We further show that on the long run CI-deficient tumors re-adapt to their inability to respond to hypoxia, concordantly with the persistence of human oncocytomas. We demonstrate that CI-deficient tumors survive and carry out angiogenesis, despite their inability to stabilize HIF-1α. Such adaptive response is mediated by tumor associated macrophages, whose blockage improves the effect of CI ablation. Additionally, the simultaneous pharmacological inhibition of CI function through metformin and macrophage infiltration through PLX-3397 impairs tumor growth in vivo in a synergistic manner, setting the basis for an efficient combinatorial adjuvant therapy in clinical trials.


Subject(s)
Adenoma, Oxyphilic/drug therapy , Adenoma, Oxyphilic/genetics , Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Metformin/pharmacology , Pyrroles/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Drosophila , Female , Gene Knockout Techniques , HCT116 Cells , Humans , Macrophages/immunology , Mice , Mice, Knockout , Mice, Nude , NADH Dehydrogenase/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays
6.
Oncotarget ; 8(39): 64728-64744, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029389

ABSTRACT

Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum. Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.

7.
Neuropeptides ; 64: 123-130, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27614713

ABSTRACT

Hypothalamic alpha-melanocyte-stimulating hormone (α-MSH) is a key catabolic mediator of energy homeostasis. Its anorexigenic and hypermetabolic effects show characteristic age-related alterations that may be part of the mechanism of middle-aged obesity and geriatric anorexia/cachexia seen in humans and other mammals. We aimed to investigate the role of α-MSH in mitochondrial energy metabolism during the course of aging in a rodent model. To determine the role of α-MSH in mitochondrial energy metabolism in muscle, we administered intracerebroventricular (ICV) infusions of α-MSH for 7-days to different age-groups of male Wistar rats. The activities of oxidative phosphorylation complexes I to V and citrate synthase were determined and compared to those of age-matched controls. We also quantified mitochondrial DNA (mtDNA) copy number and measured the expression of the master regulators of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor gamma (PPARγ). The peptide reduced weight gain in juvenile rats to one fifth of that of controls and increased the weight loss in older animals by about five fold. Mitochondrial DNA copy number inversely correlated with changes in body weight in controls, but not in α-MSH-treated animals. The strong increase in body weight in young rats was associated with a low mtDNA copy number and high PPARγ mRNA levels in controls. Expression of PGC-1α and PPARγ declined with age, whereas OXPHOS and citrate synthase enzyme activities were unchanged. In contrast, α-MSH treatment suppressed OXPHOS enzyme and citrate synthase activity. In conclusion, our results showed age-related differences in the metabolic effects of α-MSH. In addition, administration of α-MSH suppressed citrate synthase and OXPHOS activities independent of age. These findings suggest that α-MSH exposure may inhibit mitochondrial biogenesis.


Subject(s)
Energy Metabolism/drug effects , Mitochondria/drug effects , Muscle, Skeletal/metabolism , alpha-MSH/metabolism , Aging , Animals , Hypothalamus/metabolism , Male , PPAR gamma/metabolism , Rats, Wistar , Receptors, Pituitary Hormone/drug effects , Receptors, Pituitary Hormone/metabolism , Transcription Factors/metabolism
8.
J Mol Neurosci ; 59(2): 260-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26941032

ABSTRACT

Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation.


Subject(s)
Arthritis/metabolism , Autoimmune Diseases/metabolism , Receptor, Galanin, Type 3/genetics , Animals , Arthritis/genetics , Arthritis/pathology , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Capillary Permeability , Edema/metabolism , Endothelium, Vascular/metabolism , Hindlimb/pathology , Male , Mice , Neutrophils/metabolism , Receptor, Galanin, Type 3/deficiency
9.
Int J Biochem Cell Biol ; 63: 55-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25666556

ABSTRACT

Mitochondria are the energy-producing organelles of the cell, generating ATP via oxidative phosphorylation mainly by using pyruvate derived from glycolytic processing of glucose. Ketone bodies generated by fatty acid oxidation can serve as alternative metabolites for aerobic energy production. The ketogenic diet, which is high in fat and low in carbohydrates, mimics the metabolic state of starvation, forcing the body to utilize fat as its primary source of energy. The ketogenic diet is used therapeutically for pharmacoresistant epilepsy and for "rare diseases" of glucose metabolism (glucose transporter type 1 and pyruvate dehydrogenase deficiency). As metabolic reprogramming from oxidative phosphorylation toward increased glycolysis is a hallmark of cancer cells; there is increasing evidence that the ketogenic diet may also be beneficial as an adjuvant cancer therapy by potentiating the antitumor effect of chemotherapy and radiation treatment. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.


Subject(s)
Diet, Ketogenic , Energy Metabolism/genetics , Mitochondria/metabolism , Neoplasms/diet therapy , Adenosine Triphosphate/metabolism , Fatty Acids/metabolism , Glucose , Glycolysis , Humans , Ketone Bodies/metabolism , Mitochondria/pathology , Neoplasms/metabolism , Neoplasms/pathology , Oxidation-Reduction , Oxidative Phosphorylation
10.
Proc Natl Acad Sci U S A ; 104(24): 10217-22, 2007 Jun 12.
Article in English | MEDLINE | ID: mdl-17535903

ABSTRACT

Galanin-like peptide (GALP) is a hypothalamic neuropeptide belonging to the galanin family of peptides. The GALP gene is characterized by extensive differential splicing in a variety of murine tissues. One splice variant excludes exon 3 and results in a frame shift leading to a novel peptide sequence and a stop codon after 49 aa. In this peptide, which we termed alarin, the signal sequence of the GALP precursor peptide and the first 5 aa of the mature GALP are followed by 20 aa without homology to any other murine protein. Alarin mRNA was detected in murine brain, thymus, and skin. In accordance with its vascular localization, the peptide exhibited potent and dose-dependent vasoconstrictor and anti-edema activity in the cutaneous microvasculature, as was also observed with other members of the galanin peptide family. However, in contrast to galanin peptides in general, the physiological effects of alarin do not appear to be mediated via the known galanin receptors. Alarin adds another facet to the surprisingly high-functional redundancy of the galanin family of peptides.


Subject(s)
Galanin-Like Peptide/pharmacology , Peptides/pharmacology , Skin/blood supply , Vasodilator Agents/pharmacology , Amino Acid Sequence , Animals , Dermis/metabolism , Dose-Response Relationship, Drug , Edema/drug therapy , Edema/etiology , Edema/pathology , Female , Frameshift Mutation , Galanin-Like Peptide/chemistry , Galanin-Like Peptide/genetics , Galanin-Like Peptide/metabolism , Humans , Hypothalamus/chemistry , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Molecular Sequence Data , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Sorting Signals , RNA Splicing , RNA, Messenger/metabolism , Regional Blood Flow , Skin/cytology , Tissue Distribution , Vasodilator Agents/chemistry , Vasodilator Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL