Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Rep ; 14(1): 2258, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278839

ABSTRACT

Fridericia formosa (Bureau) L.G. Lohmann (Bignonaceae) is a neotropical liana species found in the Cerrado biome in Brazil. It has been of great interest to the scientific community due to its potential as a source of new antivirals, including xanthones derived from mangiferin. In this context, the present study aimed to characterize and quantify the xanthones present in the ethanol extract of this species using high performance liquid chromatography. Additionally, the antiviral activity against Chikungunya, Zika, and Mayaro viruses was evaluated. The chromatographic analyses partially identified twenty-six xanthones, among which only fourteen had already been described in the literature. The xanthones mangiferin, 2'-O-trans-caffeoylmangiferin, and 2'-O-trans-coumaroylmangiferin, are present in higher quantities in the extract, at concentrations of 9.65%, 10.68%, and 3.41% w/w, respectively. In antiviral assays, the extract inhibited the multiplication cycle only for the Mayaro virus with a CE50 of 36.1 µg/mL. Among the isolated xanthones, 2'-O-trans-coumaroylmangiferin and 2'-O-trans-cinnamoylmangiferin inhibited the viral cytopathic effect with CE50 values of 180.6 and 149.4 µg/mL, respectively. Therefore, the extract from F. formosa leaves, which has a high content of xanthones, has antiviral potential and can be a source of new mangiferin derivatives.


Subject(s)
Bignoniaceae , Xanthones , Zika Virus Infection , Zika Virus , Taiwan , Xanthones/pharmacology , Xanthones/chemistry , Plant Extracts/chemistry , Ethanol , Antiviral Agents/pharmacology
2.
Front Pharmacol ; 14: 1287580, 2023.
Article in English | MEDLINE | ID: mdl-38026962

ABSTRACT

Introduction: Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine. Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish. Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity. Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception. Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish.

3.
Eur J Med Chem ; 260: 115760, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37657273

ABSTRACT

Cannabis is a general name for plants of the genus Cannabis. Used as fiber, medicine, drug, for religious, therapeutic, and hedonistic purposes along the millenia, it is mostly known for its psychoactive properties. One of its major constituents, cannabidiol (CBD), a non-psychoactive substance, among many other biological activities, has shown potential as an anti-SARS-CoV-2 drug. In this work, three derivatives and an analogue of CBD were synthesized, and cell viability and antiviral activities were evaluated. None of the compounds showed cytotoxicity up to a maximum concentration of 100 µM and, in contrast, displayed a significant antiviral activity, superior to remdesivir and nafamostat mesylate, with IC50 values ranging from 9.4 to 1.9 µM. In order to search for a possible molecular target, the inhibitory activity of the compounds against ACE2 was investigated, with expressive results (IC50 ranging from 3.96 µM to 0.01 µM).


Subject(s)
COVID-19 , Cannabidiol , Humans , Cannabidiol/pharmacology , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Antiviral Agents/pharmacology
4.
Molecules ; 28(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985517

ABSTRACT

The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian Cerrado, whose ethanolic extract showed significant in vitro anti-Zika virus activity by the MTT colorimetric method. Currently, there is no drug in clinical use specifically for the treatment of this virus; therefore, in this work, the antiviral and cytotoxic properties of the ethanolic extract, fractions, and compounds were evaluated. The ethanolic extract of the leaves showed no cytotoxicity for the human MRC-5 cell and was moderately cytotoxic for the Vero cell (CC50 161.5 ± 2.01 µg/mL). This extract inhibited the Zika virus multiplication cycle with an EC50 of 85.2 ± 1.65 µg/mL. This extract was fractionated using the liquid-liquid partition technique, and the ethyl acetate fraction showed significant activity against the Zika virus with an EC50 of 40.7 ± 2.33 µg/mL. From the ethyl acetate fraction, the flavonoids quercetin-3-O-hexosylgallate (1), quercetin-3-O-glucoside (2), and quercetin (5) were isolated, and in addition to these compounds, a mixture of quercetin-3-O-rhamnoside (3) and quercetin-3-O-arabinoside (4) was also obtained. The isolated compounds quercetin and quercetin-3-O-hexosylgallate inhibited the viral cytopathic effect at an EC50 of 18.6 ± 2.8 and 152.8 ± 2.0, respectively. Additionally, analyses by liquid chromatography coupled to a mass spectrometer allowed the identification of another 24 minor phenolic constituents present in the ethanolic extract and in the ethyl acetate fraction of this species.


Subject(s)
Dilleniaceae , Zika Virus Infection , Zika Virus , Humans , Flavonoids/chemistry , Quercetin , Ethanol/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Zika Virus Infection/drug therapy
5.
Nat Prod Res ; 37(4): 613-617, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35428404

ABSTRACT

Millingtonia hortensis L.f. and Oroxylum indicum (L.) Kurz (Bignoniaceae) are native species from the Asian continent. They are popularly used in traditional medicine and their extracts are rich in flavonoids. In this work, ethanolic extracts of stems and leaves of these species were evaluated against the Chikungunya, Zika and Mayaro virus. The extracts were subjected to analysis by ultra-efficient liquid chromatography coupled to mass spectrometry. Additionally, M. hortensis leaves extract was fractionated, leading to the isolation of hispidulin. Anti-arboviral activity against the three viruses was detected for M. hortensis leaves extract with EC50 ranging from 37.8 to 134.1 µg/mL and for O. indicum stems extract with EC50 ranging from 18.6 to 55.9 µg/mL. Hispidulin inhibited viral cytopathic effect of MAYV (EC50 value 32.2 µM) and CHIKV (EC50 value 78.8 µM). In LC-DAD-ESI-MS/MS analysis we characterized 25 flavonoids confirming once again the presence of these substances in extracts of these species.


Subject(s)
Bignoniaceae , Zika Virus Infection , Zika Virus , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Bignoniaceae/chemistry , Flavonoids/chemistry , Ethanol
6.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144777

ABSTRACT

Plant extracts are complex mixtures that are difficult to characterize, and mass spectrometry is one of the main techniques currently used in dereplication processes. Fridericia chica is a species with medicinal uses in Latin American countries, used in the treatment of inflammatory and infectious diseases. Extracts of this plant species are characterized by the presence of anthocyanidins. In this study, using high-resolution mass spectrometry coupled with liquid chromatography, it was possible to determine the molecular formula of thirty-nine flavonoids. Fragmentation analysis, ultraviolet spectrum and nuclear magnetic resonance data allowed the partial characterization of the structures of these compounds. The spectral dataset allowed the identification of a series of flavones in addition to the desoxyanthocyanidins common in extracts of the species. The occurrence of some of the proposed structures is uncommon in extracts of species of the Bignoniaceae family, and they are reported for the first time in the extract of this species. Quantitative analyses of total flavonoids confirmed the high content of these constituents in the species, with 4.09 ± 0.34 mg/g of dry plant material. The extract under study showed low in vitro cytotoxicity with CC50 ≥ 296.7 ± 1.4 µg/mL for Vero, LLC-MK2 and MRC-5 cell lines. In antiviral activity assays, inhibition of the cytopathic effects of Dengue, Zika and Mayaro viruses was observed, with EC50 values ranging between 30.1 and 40.9 µg/mL. The best result was observed against the Mayaro virus, with an EC50 of 30.1 µg/mL.


Subject(s)
Bignoniaceae , Flavones , Zika Virus Infection , Zika Virus , Anthocyanins/analysis , Antiviral Agents/analysis , Antiviral Agents/pharmacology , Bignoniaceae/chemistry , Flavones/analysis , Flavones/pharmacology , Flavonoids/analysis , Flavonoids/pharmacology , Mass Spectrometry , Plant Extracts/chemistry , Plant Leaves/chemistry
7.
Chem Biodivers ; 19(3): e202100788, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146890

ABSTRACT

Mauritia flexuosa Linnaeus filius (buriti or aguage; Arecaceae) is a palm used by traditional medicine in Brazil to treat dysentery and diarrhea. Our group showed that the soluble dichloromethane (CH2 Cl2 ) fraction from EtOH extract from M. flexuosa stems inhibited the growth of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) and it is rich in phenolic compounds. This study aimed to isolate new phenolic compounds from CH2 Cl2 fraction from M. flexuosa stems with in vitro antibacterial activity. The crude CH2 Cl2 fraction was fractionated by gel permeation chromatography (GPC) followed by semi-preparative RP-HPLC. The antibacterial activity was evaluated using the broth microdilution method against MSSA (ATCC 29213) and MRSA (clinical isolate 155). All compounds were also tested against Gram-negative (Escherichia coli; ATCC 35218) bacteria and two fungi species (Candida albicans; ATCC 14053 and Trichophyton rubrum; ATCC MYA 4438). The chemical structures of isolated compounds were determined by analysis and comparison with literature data of their NMR and HRMS spectra and optical activity. The chemical investigation yielded seven aromatic compounds, of which four, (2S,15S)-2,15-dimethyl-2,15-dioxa-1,8(1,4)-dibenzenacyclotetradecaphane (1), (2S,5S)-1-(4-hydroxyphenyl)hexane-2,5-diol (3), bruguierol E (4), and buritin (5) were previously unreported and three are known compounds identified as 6-(4'-hydroxyphenyl) hexan-2-one (2), (+)-(2R,3R)-dihydrokaempferol (6), and (+)-(2R)-naringenin (7). Compounds 1 and 7 showed antibacterial activity against MRSA and MSSA with minimum inhibitory concentrations (MICs) of between 62.5 and 31.3 µg/mL, respectively. Our preliminary findings support that CH2 Cl2 fraction from buriti, a typical species of flooded areas of Brazilian savanna, and its aromatic phenolic compounds are active against MSSA and MRSA contributing with understanding about the traditional use of this species.


Subject(s)
Arecaceae , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Arecaceae/chemistry , Microbial Sensitivity Tests , Staphylococcus aureus
8.
Virol J ; 19(1): 31, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35193667

ABSTRACT

BACKGROUND: The worldwide epidemics of diseases as dengue and Zika have triggered an intense effort to repurpose drugs and search for novel antivirals to treat patients as no approved drugs for these diseases are currently available. Our aim was to screen plant-derived extracts to identify and isolate compounds with antiviral properties against dengue virus (DENV) and Zika virus (ZIKV). METHODS: Seven thousand plant extracts were screened in vitro for their antiviral properties against DENV-2 and ZIKV by their viral cytopathic effect reduction followed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, previously validated for this purpose. Selected extracts were submitted to bioactivity-guided fractionation using high- and ultrahigh-pressure liquid chromatography. In parallel, high-resolution mass spectrometric data (MSn) were collected from each fraction, allowing compounds into the active fractions to be tracked in subsequent fractionation procedures. The virucidal activity of extracts and compounds was assessed by using the plaque reduction assay. EC50 and CC50 were determined by dose response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral vs. cytotoxic activity. Purified compounds were used in nuclear magnetic resonance spectroscopy to identify their chemical structures. Two compounds were associated in different proportions and submitted to bioassays against both viruses to investigate possible synergy. In silico prediction of the pharmacokinetic and toxicity (ADMET) properties of the antiviral compounds were calculated using the pkCSM platform. RESULTS: We detected antiviral activity against DENV-2 and ZIKV in 21 extracts obtained from 15 plant species. Hippeastrum (Amaryllidaceae) was the most represented genus, affording seven active extracts. Bioactivity-guided fractionation of several extracts led to the purification of lycorine, pretazettine, narciclasine, and narciclasine-4-O-ß-D-xylopyranoside (NXP). Another 16 compounds were identified in active fractions. Association of lycorine and pretazettine did not improve their antiviral activity against DENV-2 and neither to ZIKV. ADMET prediction suggested that these four compounds may have a good metabolism and no mutagenic toxicity. Predicted oral absorption, distribution, and excretion parameters of lycorine and pretazettine indicate them as candidates to be tested in animal models. CONCLUSIONS: Our results showed that plant extracts, especially those from the Hippeastrum genus, can be a valuable source of antiviral compounds against ZIKV and DENV-2. The majority of compounds identified have never been previously described for their activity against ZIKV and other viruses.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Dengue/drug therapy , Humans , Vero Cells
9.
Pest Manag Sci ; 77(10): 4638-4647, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34092005

ABSTRACT

BACKGROUND: Using plant-based extracts and their constituents has been suggested as an alternative tool to replace or integrate with the synthetic compounds used to manage insect pests. Here, we evaluated the potential of extracts obtained from Ficus carica Linn (Moraceae) branches and leaves against the Neotropical brown stink bug, Euschistus heros, one of the most prevalent insect pests in soybean fields. We further isolated and evaluated the toxicity of the extracts' major components against E. heros. Additionally, by using computational docking analysis and toxicological approaches, we assessed the physiological basis for the selectivity of these extracts against beneficial insects such as pollinator bees (i.e. Apis mellifera and the Neotropical stingless bee Partamona helleri), ladybeetles (Eriopis connexa and Coleomegilla maculata), and lacewings (Chrysoperla externa). RESULTS: Our results demonstrate that branch (LC50  = 5.9 [4.7-7.1] mg mL-1 ) and leaf (LC50  = 14.1 [12.5-15.4] mg mL-1 ) extracts exhibited similar toxicity against E. heros. Our phytochemical analysis revealed psoralen and bergapten furanocoumarins as the major components of the extract. Based on our computational predictions, these molecules' differential abilities to physically interact with the acetylcholinesterases of E. heros and beneficial insects play relevant roles in their selectivity actions. The estimated LC90 values of branch (30.0 mg mL-1 ) and leaf (30.0 mg mL-1 ) extracts killed less than 12% of the beneficial insects. CONCLUSION: Overall, our findings revealed that furanocoumarin-rich extracts obtained from F. carica extracts have the potential to be used as alternative tools in the integrated management of stink bug pests. © 2021 Society of Chemical Industry.


Subject(s)
Coleoptera , Ficus , Heteroptera , Animals , Bees , Plant Extracts , Glycine max
10.
Malar J ; 17(1): 436, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30477525

ABSTRACT

BACKGROUND: Several species of Aspidosperma plants are referred to as remedies for the treatment of malaria, especially Aspidosperma nitidum. Aspidosperma pyrifolium, also a medicinal plant, is used as a natural anti-inflammatory. Its fractionated extracts were assayed in vitro for activity against malaria parasites and for cytotoxicity. METHODS: Aspidosperma pyrifolium activity was evaluated against Plasmodium falciparum using extracts in vitro. Toxicity towards human hepatoma cells, monkey kidney cells or human monocytes freshly isolated from peripheral blood was also assessed. Anti-malarial activity of selected extracts and fractions that presented in vitro activity were tested in mice with a Plasmodium berghei blood-induced infection. RESULTS: The crude stem bark extract and the alkaloid-rich and ethyl acetate fractions from stem extract showed in vitro activity. None of the crude extracts or fractions was cytotoxic to normal monkey kidney and to a human hepatoma cell lines, or human peripheral blood mononuclear cells; the MDL50 values of all the crude bark extracts and fractions were similar or better when tested on normal cells, with the exception of organic and alkaloidic-rich fractions from stem extract. Two extracts and two fractions tested in vivo caused a significant reduction of P. berghei parasitaemia in experimentally infected mice. CONCLUSION: Considering the high therapeutic index of the alkaloidic-rich fraction from stem extract of A. pyrifolium, it makes the species a candidate for further investigation aiming to produce a new anti-malarial, especially considering that the active extract has no toxicity, i.e., no mutagenic effects in the genototoxicity assays, and that it has an in vivo anti-malarial effect. In its UPLC-HRMS analysis this fraction was shown to have two major components compatible with the bisindole alkaloid Leucoridine B, and a novel compound, which is likely to be responsible for the activity against malaria parasites demonstrated in in vitro tests.


Subject(s)
Antimalarials/pharmacology , Aspidosperma/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/administration & dosage , Antimalarials/isolation & purification , Antimalarials/toxicity , Brazil , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Female , Haplorhini , Humans , Malaria/therapy , Mice , Parasite Load , Parasitemia , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plasmodium berghei/isolation & purification , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL