Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 921: 171055, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387582

ABSTRACT

Nanoscale carbon was obtained from six widely used plastics (PET, HDPE, PVC, LDPE, PP and PP) via thermal degradation (600 °C) under inert atmosphere. The thermally degraded products were processed through bath sonication followed by lyophilisation and the same was characterized through proximate analysis, UV-Vis spectroscopy, Scanning electron micrograph (SEM) with energy dispersive X-ray (EDX) analysis, Transmission electron micrograph (TEM), Dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). A series of aqueous solution of nanoscale carbon (5-30 mg/L) were prepared and same were used as both mosquito growth inhibitor and larvicidal agent against 3rd and 4th instar larvae of Culex pipiens. The significant percent mortality results were recorded for LDPE (p < 0.007) with average particle size of 3.01 nm and 62.95 W% of carbon and PS (p < 0.002) with average particle size of 12.80 nm and 58.73 W% of carbon against 3rd instar larvae, respectively. Similarly, for 4th instar larvae, both significant pupicidal and adulticidal activity were also recorded for PET (F = 24.0, p < 0.0001 and F = 5.73, p < 0.006), and HDPE (F = 26.0, p < 0.0001) and F = 5.30, p < 0.008). However, significant pupicidal activity were observed for PVC (F = 6.90, p < 0.003), and PS (F = 21.30, p < 0.0001). Histological, bio-chemical and microscopic studies were revealed that nanoscale carbon causes mild to severe damage of external and internal cellular integrity of larvae. However, nanoscale carbon does not exhibit any chromosomal abnormality and anatomical irregularities in Allium cepa and Cicer arietinum, respectively. Similarly, non-significant results with respect to blood cell deformation were also recorded from blood smear of Poecilia reticulata. Therefore, it can be concluded that plastic origin nanoscale carbon could be a viable sustainable nano-weapon towards control of insects.


Subject(s)
Culex , Culicidae , Insecticides , Metal Nanoparticles , Animals , Polyethylene/analysis , Silver/chemistry , Insecticides/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Larva/metabolism , Carbon/analysis , Metal Nanoparticles/chemistry
2.
Environ Sci Pollut Res Int ; 30(55): 117932-117951, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872343

ABSTRACT

Magnesium oxide nanoparticles (MgO NPs) have been attracted by the scientific community for their combating action against heavy metal stress in plants. However, their role towards the mitigation of arsenic (As) induced toxicity is still obscure. In the present study, MgO NPs were synthesized through the green route and assessed their efficacy towards the reduction of As accumulation and phytotoxicity in As-stressed rice cultivar MTU-1010 under laboratory conditions. Initially, rice seedlings were grown under separate and combined applications of As (10 mg/L) and MgO NPs (0, 10, 50, and 100 mg/L) and further analyzed plant growth attributes and As accumulation in rice seedlings. Characterization of biosynthesized MgO NPs by UV-Vis spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis showed the cubic in shape, and crystalline nature (73.10%) with average size ranges from 17-23 nm. The growth experiment showed a significant (p < 0.05) increase in seed germination, seedling growth, photosynthetic and other pigments content, and biomass accumulation in rice seedlings under the combined application of As (10 mg/L) and MgO NPs (50 mg/L) as compared to only As (10 mg/L) treatment. Additionally, As exposure resulted in declined primary metabolites such as soluble sugars and protein. However, the application of MgO NPs exhibited the alleviation of As toxicity through significant (p < 0.05) reduction of As accumulation by 34 and 53% in roots and 44 and 62% in shoots of rice seedlings under 50 and 100 mg/L MgO NPs supplementations, respectively and restored the accumulation of the primary metabolites. Furthermore, MgO NPs demonstrated the ability to scavenge reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion (O2•-), through significant (p < 0.05) promotion of non-enzymatic (carotenoid, anthocyanin, flavonoid, and proline) and enzymatic (CAT, POD, and SOD) antioxidant defence under As stress. These findings highlighted the potential of green synthesized MgO NPs towards the mitigation of As contamination in rice plants. However, future study is necessary to unfold the actual mechanisms responsible for the protective effects of MgO NPs and to screen out the optimal dose to be used to formulate a potent nanofertilizer for sustainable rice production in metal-contaminated soils.


Subject(s)
Arsenic , Nanoparticles , Oryza , Magnesium Oxide/pharmacology , Arsenic/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Antioxidants/metabolism , Seedlings , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL