Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
FASEB J ; 28(4): 1854-69, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24421398

ABSTRACT

Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (~15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1-2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ~50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.


Subject(s)
Blindness/etiology , Dietary Supplements/toxicity , Mannose-6-Phosphate Isomerase/metabolism , Mannose/toxicity , Animals , Blindness/genetics , Blindness/metabolism , Blotting, Western , Cells, Cultured , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Eye/embryology , Eye/growth & development , Eye/metabolism , Female , Humans , Immunohistochemistry , Male , Mannose/blood , Mannose/metabolism , Mannose-6-Phosphate Isomerase/genetics , Mannosephosphates/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Placenta/drug effects , Placenta/embryology , Placenta/metabolism , Pregnancy
2.
Clin Cancer Res ; 13(22 Pt 1): 6769-78, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-18006779

ABSTRACT

PURPOSE: Sensitize melanomas to apoptosis and inhibit their growth and metastatic potential by compounds that mimic the activities of activating transcription factor 2 (ATF2)-driven peptides. EXPERIMENTAL DESIGN: Small-molecule chemical library consisting of 3,280 compounds was screened to identify compounds that elicit properties identified for ATF2 peptide, including (a) sensitization of melanoma cells to apoptosis, (b) inhibition of ATF2 transcriptional activity, (c) activation of c-Jun NH(2)-terminal kinase (JNK) and c-Jun transcriptional activity, and (d) inhibition of melanoma growth and metastasis in mouse models. RESULTS: Two compounds, celastrol (CSL) and acetyl isogambogic acid, could, within a low micromolar range, efficiently elicit cell death in melanoma cells. Both compounds efficiently inhibit ATF2 transcriptional activities, activate JNK, and increase c-Jun transcriptional activities. Similar to the ATF2 peptide, both compounds require JNK activity for their ability to inhibit melanoma cell viability. Derivatives of CSL were identified as potent inducers of cell death in mouse and human melanomas. CSL and a derivative (CA19) could also efficiently inhibit growth of human and mouse melanoma tumors and reduce the number of lung metastases in syngeneic and xenograft mouse models. CONCLUSIONS: These studies show for the first time the effect of CSL and acetyl isogambogic acid on melanoma. These compounds elicit activities that resemble the well-characterized ATF2 peptide and may therefore offer new approaches for the treatment of this tumor type.


Subject(s)
Chromones/pharmacology , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Triterpenes/pharmacology , Activating Transcription Factor 2/antagonists & inhibitors , Animals , Cell Line, Tumor , Chromones/chemistry , Chromones/therapeutic use , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , MAP Kinase Kinase 4/metabolism , Melanoma/metabolism , Melanoma/pathology , Mice , Pentacyclic Triterpenes , Proto-Oncogene Proteins c-jun/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Small Molecule Libraries/chemistry , Transcription, Genetic , Triterpenes/chemistry , Triterpenes/therapeutic use
3.
Oncogene ; 22(35): 5427-35, 2003 Aug 21.
Article in English | MEDLINE | ID: mdl-12934102

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the family of programmed cell death-inducing cytokines. Apo2L/TRAIL induces apoptosis in a wide variety of tumor cells. Tumor cells that are resistant to Apo2L/TRAIL-induced apoptosis can be sensitized by chemotherapeutic drugs and other agents via an unknown mechanism. Here we report that PG490 (triptolide), a diterpene triepoxide extracted from the Chinese herb Tripterygium wilfordii and used in traditional Chinese medicine, sensitizes lung cancer but not normal human bronchial epithelial cells to Apo2L/TRAIL-induced apoptosis. Sensitization was accompanied by caspase-3 and caspase-8 activation, whereas no cleavage of caspase-9 was observed. Determination of cell surface receptors by flow cytometry demonstrated no difference in Apo2L/TRAIL-R1 and -R2 expression, the two receptors with functional death domains, between resistant and sensitized cells. In cells treated with the combination of Apo2L/TRAIL and PG490, we observed activation of ERK2, a member of the mitogen-activated protein kinase family. Furthermore, sensitization could be blocked by the ERK inhibitor U0126 but not the p38 inhibitor SB203580, suggesting that activation of ERK2 is required for this effect. In addition, sensitization of lung cancer cells was also seen in ex vivo culture of lung cancer tissue from four patients who underwent surgery. Immunohistochemical staining showed a clear reduction in proliferation cell nuclear antigen (PCNA) in tissue treated with Apo2L/TRAIL and PG490. In conclusion, apoptosis induced by the combination of Apo2L/TRAIL and PG490 warrants further evaluation as a potential new strategy for the treatment of lung cancer.


Subject(s)
Apoptosis/physiology , Lung Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Phenanthrenes , Tumor Necrosis Factor-alpha/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Diterpenes/pharmacology , Enzyme Activation , Epoxy Compounds , Humans , Lung Neoplasms/drug therapy , TNF-Related Apoptosis-Inducing Ligand
SELECTION OF CITATIONS
SEARCH DETAIL