Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Radiol Prot ; 43(2)2023 06 08.
Article in English | MEDLINE | ID: mdl-37257438

ABSTRACT

A pilot study was carried out to measure indoor radon concentrations in a uranium mining area of northern Kazakhstan. A total of 80 places at kindergartens, elementary schools, and dwellings were selected in Aqsu village and Astana city as the uranium mining area and background area for comparison, respectively. In Astana and Aqsu, the 3-month radon concentrations from late summer to autumn in 2022 were measured using the RADUET passive radon detectors. Radon concentrations ranged from 4 to >2000 Bq m-3(mean ± standard deviation: 290 ± 173 Bq m-3) throughout the study areas. The concentrations were higher in Aqsu, and 70% of the dwellings there exceeded 300 Bq m-3, whereas only 5% of them exceeded 300 Bq m-3in Astana. Accordingly, the new dose conversion factor for radon recommended by International Commission on Radiological Protection Publication 137 was applied to calculate the annual effective dose. The annual effective dose from the inhalation of radon was estimated to be 3.6 ± 4.6 mSv y-1for Astana and 23.7 ± 15.6 mSv y-1, for Aqsu, which are both higher than the world average value of 2.5 mSv y-1.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Uranium , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Kazakhstan , Pilot Projects , Housing , Radon/analysis
2.
Radiat Prot Dosimetry ; 198(8): 467-471, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35679532

ABSTRACT

A passive integrating discriminative radon-thoron monitor (Raduet) and a radon-thoron progeny monitor with a solid-state nuclear tracking detector were used for estimating indoor radon, thoron and their progeny concentrations in residential areas around the old mines of southern Thailand. Exposure to high background radiation levels from natural 238U and 232Th in the tin mine areas or active fault areas may increase the risk of lung cancer in the respiratory system when considering the health effects of the surrounding inhabitants. In this study, radon thoron and their progeny concentrations from inhalation in the study site have been assessed in dose at volunteer houses to confirm radiation effects. The annual effective doses due to inhalation of radon-thoron, radon progeny and thoron progeny using the ICRP latest dose conversion factors were estimated to be 3.0-4.6, 2.5-3.7 and 0.4-1.0 mSv, respectively, and as 5.9-9.0 mSv in total.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Uranium , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Background Radiation , Housing , Humans , Radon/analysis , Radon Daughters/analysis , Thailand , Thorium
SELECTION OF CITATIONS
SEARCH DETAIL