Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biol Reprod ; 110(4): 672-683, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38263524

ABSTRACT

Chemically defined oocyte maturation media supplemented with FGF2, LIF, and IGF-1 (FLI medium) enabled significantly improved oocyte quality in multiple farm animals, yet the molecular mechanisms behind such benefits were poorly defined. Here, we first demonstrated that FLI medium enhanced mouse oocyte quality assessed by blastocyst formation after in vitro fertilization and implantation and fetal development after embryo transfer. We then analyzed the glucose concentrations in the spent media; reactive oxygen species concentrations; mitochondrial membrane potential; spindle morphology in oocytes; and the abundance of transcripts of endothelial growth factor-like factors, cumulus expansion factors, and glucose metabolism-related genes in cumulus cells. We found that FLI medium enabled increased glucose metabolism through glycolysis, pentose phosphate pathway, and hexosamine biosynthetic pathway, as well as more active endothelial growth factor-like factor expressions in cumulus cells, resulting in improved cumulus cell expansion, decreased spindle abnormality, and overall improvement in oocyte quality. In addition, the activities of MAPK1/3, PI3K/AKT, JAK/STAT3, and mTOR signaling pathways in cumulus cells were assessed by the phosphorylation of MAPK1/3, AKT, STAT3, and mTOR downstream target RPS6KB1. We demonstrated that FLI medium promoted activations of all these signaling pathways at multiple different time points during in vitro maturation.


Subject(s)
Fibroblast Growth Factor 2 , In Vitro Oocyte Maturation Techniques , Animals , Mice , Female , In Vitro Oocyte Maturation Techniques/veterinary , Fibroblast Growth Factor 2/metabolism , Insulin-Like Growth Factor I/metabolism , Endothelial Growth Factors/analysis , Endothelial Growth Factors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Oocytes/metabolism , TOR Serine-Threonine Kinases/metabolism , Dietary Supplements , Glucose/pharmacology , Glucose/metabolism , Cumulus Cells/metabolism
2.
Reprod Fertil ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37971749

ABSTRACT

The refinement of embryo culture media is essential in improving embryo viability and in vitro production efficiency. Our previous work demonstrated that the nutrients (carbohydrates, amino acids, and vitamins) in traditional culture media far exceed the need for an embryo and producing developmentally competent embryos in a reduced nutrient environment is feasible. Here, we aim to evaluate the impact of exogenous lipid and L-carnitine supplementation on bovine blastocyst development and refine our RN condition further. Zygotes were cultured in the control medium (100% nutrients) and reduced nutrient media containing 6.25% of the standard nutrient concentrations supplemented with L-carnitine and lipid free or lipid rich BSA. Increased blastocyst development was observed in the reduced nutrient lipid rich medium compared to the other two groups. However, in both reduced nutrient conditions, blastocyst cell numbers were lower than those obtained in the control condition. We then examined the expression level of 18 transcripts correlated with lipid metabolism, glucose metabolism, redox balance, and embryo quality, along with mitochondrial DNA copy numbers, ATP productions, and lipid profile. The results indicated lipid metabolism, embryo quality, and redox enzyme related genes were upregulated while glucose related gene was downregulated in embryos derived from reduced nutrient lipid rich condition Finally, we identified that the lipid rich BSA has enriched linoleic, stearic, oleic, palmitic, and alpha-linoleic fatty acids, a lipid profile that may contribute to the increased lipid metabolism and improved blastocyst development of the bovine embryos under the reduced nutrient condition.

3.
Hum Reprod ; 38(10): 1938-1951, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37608600

ABSTRACT

STUDY QUESTION: Does a chemically defined maturation medium supplemented with FGF2, LIF, and IGF1 (FLI) improve in vitro maturation (IVM) of cumulus-oocyte complexes (COCs) obtained from children, adolescents, and young adults undergoing ovarian tissue cryopreservation (OTC)? SUMMARY ANSWER: Although FLI supplementation did not increase the incidence of oocyte meiotic maturation during human IVM, it significantly improved quality outcomes, including increased cumulus cell expansion and mitogen-activated protein kinase (MAPK) expression as well as enhanced transzonal projection retraction. WHAT IS KNOWN ALREADY: During OTC, COCs, and denuded oocytes from small antral follicles are released into the processing media. Recovery and IVM of these COCs is emerging as a complementary technique to maximize the fertility preservation potential of the tissue. However, the success of IVM is low, especially in the pediatric population. Supplementation of IVM medium with FLI quadruples the efficiency of pig production through improved oocyte maturation, but whether a similar benefit occurs in humans has not been investigated. STUDY DESIGN, SIZE, DURATION: This study enrolled 75 participants between January 2018 and December 2021 undergoing clinical fertility preservation through the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago. Participants donated OTC media, accumulated during tissue processing, for research. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants who underwent OTC and include a pediatric population that encompassed children, adolescents, and young adults ≤22 years old. All participant COCs and denuded oocytes were recovered from media following ovarian tissue processing. IVM was then performed in either a standard medium (oocyte maturation medium) or one supplemented with FLI (FGF2; 40 ng/ml, LIF; 20 ng/ml, and IGF1; 20 ng/ml). IVM outcomes included meiotic progression, cumulus cell expansion, transzonal projection retraction, and detection of MAPK protein expression. MAIN RESULTS AND THE ROLE OF CHANCE: The median age of participants was 6.3 years, with 65% of them classified as prepubertal by Tanner staging. Approximately 60% of participants had been exposed to chemotherapy and/or radiation prior to OTC. On average 4.7 ± 1 COCs and/or denuded oocytes per participant were recovered from the OTC media. COCs (N = 41) and denuded oocytes (N = 29) were used for IVM (42 h) in a standard or FLI-supplemented maturation medium. The incidence of meiotic maturation was similar between cohorts (COCs: 25.0% vs 28.6% metaphase II arrested eggs in Control vs FLI; denuded oocytes: 0% vs 5.3% in Control vs FLI). However, cumulus cell expansion was 1.9-fold greater in COCs matured in FLI-containing medium relative to Controls and transzonal projection retraction was more pronounced (2.45 ± 0.50 vs 1.16 ± 0.78 projections in Control vs FLIat 16 h). Additionally, MAPK expression was significantly higher in cumulus cells obtained from COCs matured in FLI medium for 16-18 h (chemiluminescence corrected area 621,678 vs 2,019,575 a.u., P = 0.03). LIMITATIONS, REASONS FOR CAUTION: Our samples are from human participants who exhibited heterogeneity with respect to age, diagnosis, and previous treatment history. Future studies with larger sample sizes, including adult participants, are warranted to determine the mechanism by which FLI induces MAPK expression and activation. Moreover, studies that evaluate the developmental competence of eggs derived from FLI treatment, including assessment of embryos as outcome measures, will be required prior to clinical translation. WIDER IMPLICATIONS OF THE FINDINGS: FLI supplementation may have a conserved beneficial effect on IVM for children, adolescents, and young adults spanning the agricultural setting to clinical fertility preservation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Department of Obstetrics and Gynecology startup funds (F.E.D.), Department of Surgery Faculty Practice Plan Grant and the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago (M.M.L. and E.E.R.). M.M.L. is a Gesualdo Foundation Research Scholar. Y.Y.'s research is supported by the internal research funds provided by Colorado Center of Reproductive Medicine. Y.Y., L.D.S., R.M.R., and R.S.P. have a patent pending for FLI. The remaining authors have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Fibroblast Growth Factor 2 , In Vitro Oocyte Maturation Techniques , Pregnancy , Female , Adolescent , Humans , Child , Animals , Swine , Young Adult , Adult , Fibroblast Growth Factor 2/metabolism , Oocytes/metabolism , Hormones , Dietary Supplements , Insulin-Like Growth Factor I/metabolism
4.
J Assist Reprod Genet ; 40(5): 1003-1014, 2023 May.
Article in English | MEDLINE | ID: mdl-37017886

ABSTRACT

PURPOSE: Estrogen is well-known for preparing uterine receptivity. However, its roles in regulating embryo development and implantation are unclear. Our objective was to characterize estrogen receptor 1 (ESR1) in human and mouse embryos and determine the effect of estradiol (E2) supplementation on pre- and peri-implantation blastocyst development. METHODS: Mouse embryos, 8-cell through hatched blastocyst stages, and human embryonic days 5-7 blastocysts were stained for ESR1 and imaged using confocal microscopy. We then treated 8-cell mouse embryos with 8 nM E2 during in vitro culture (IVC) and examined embryo morphokinetics, blastocyst development, and cell allocation into the inner cell mass (ICM) and trophectoderm (TE). Finally, we disrupted ESR1, using ICI 182,780, and evaluated peri-implantation development. RESULTS: ESR1 exhibits nuclear localization in early blastocysts followed by aggregation, predominantly in the TE of hatching and hatched blastocysts, in human and mouse embryos. During IVC, most E2 was absorbed by the mineral oil, and no effect on embryo development was found. When IVC was performed without an oil overlay, embryos treated with E2 exhibited increased blastocyst development and ICM:TE ratio. Additionally, embryos treated with ICI 182,780 had significantly decreased trophoblast outgrowth during extended embryo culture. CONCLUSION: Similar ESR1 localization in mouse and human blastocysts suggests a conserved role in blastocyst development. These mechanisms may be underappreciated due to the use of mineral oil during conventional IVC. This work provides important context for how estrogenic toxicants may impact reproductive health and offers an avenue to further optimize human-assisted reproductive technology (ART) to treat infertility.


Subject(s)
Embryonic Development , Mineral Oil , Humans , Mice , Animals , Fulvestrant , Embryonic Development/genetics , Blastocyst , Estrogens/pharmacology
5.
F S Sci ; 2(1): 50-58, 2021 02.
Article in English | MEDLINE | ID: mdl-35559764

ABSTRACT

OBJECTIVE: To characterize fatty acid (FA) profile of commercially available albumin products and determine their effect on embryonic development. DESIGN: Research study. SETTING: Private research facility. ANIMAL(S): Outbred mice aged 4-8 weeks. INTERVENTION(S): Gas chromatography-mass spectrometry was used to quantify the FA content of 15 commercial albumins. Embryos were produced in media containing different albumin products, with or without carnitine or exogenous FA supplementation, to determine their effect on embryo development in vitro. MAIN OUTCOME MEASURE(S): Total micrograms of FA per milligram of albumin for the 15 albumin products, blastocyst development, cell number, allocation to the trophectoderm (TE) or inner cell mass (ICM), and evaluation of morphology during implantation. RESULT(S): The albumin products contained 0.07-16.77 µg total FA/mg albumin. Compared to media with with >1.4 µg FA/mg albumin, media with <0.5 µg FA/mg albumin supported improved blastocyst development, and addition of carnitine mitigated this difference. Addition of palmitoleic acid or oleic acid individually did not improve blastocyst development and decreased ICM:TE ratio. However, in the presence of carnitine, there was improved blastocyst development and maintenance of the ICM:TE ratio. Embryos cultured in Vitrolife human serum albumin with supplementation of carnitine, palmitoleic acid, and oleic acid were more likely to develop cells positive for POU5F1 in an extended embryo culture than embryos cultured in Origio serum protein substitute. CONCLUSION(S): Commercial albumin products contain FAs, which vary in abundance. These FAs have different effects on embryo development and quality before and during the implantation stage. Several of these albumin preparations are routinely used for human-assisted reproductive technologies; therefore, serious consideration is warranted when selecting a product for clinical use.


Subject(s)
Fatty Acids , Oleic Acid , Albumins/pharmacology , Animals , Carnitine/pharmacology , Culture Media/pharmacology , Embryo Implantation , Fatty Acids/pharmacology , Female , Mice , Pregnancy
6.
Reprod Fertil Dev ; 27(6): 975-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25739837

ABSTRACT

Maternal aging results in reduced oocyte and blastocyst quality, thought to be due, in part, to mitochondrial dysfunction and accumulation of reactive oxygen species. To reduce oxidative stress, the antioxidants α-lipoic acid (ALA; 10µM), α-tocopherol (250µM), hypotaurine (1mM) and N-acetylcysteine (NAC; 1mM), and sirtuin (100ngmL(-1)) were added to embryo culture medium (AntiOX) and compared with a control (CON) without antioxidants to assess blastocyst development after in vitro maturation and fertilisation of oocytes from aged B6D2F1 female mice (13.5 months). Development to the blastocyst stage increased in the AntiOX compared with CON group (87.6% vs 72.7%, respectively; P<0.01), in addition to higher mitochondrial membrane potential and ATP levels in the AntiOX group. Expression of genes associated with oxidative stress (PI3K, FOXO3A and GLRX2) was upregulated in the CON compared with AntiOX group. In addition to AntiOX, a medium containing only NAC and ALA (rAntiOX) was used to culture embryos from young CF1 females (6-8 weeks). More blastocysts developed in the rAntiOX compared with CON group (64.1% vs 43.3%, respectively; P<0.01), although AntiOX (48.0% blastocysts) did not result in improved development in young mice. Antioxidants improved mitochondrial activity, gene expression and development in embryos of older female mice, whereas a reduced level of antioxidants during culture was beneficial to embryos from young mice.


Subject(s)
Antioxidants/pharmacology , Embryonic Development/drug effects , Mitochondria/drug effects , Acetylcysteine/pharmacology , Age Factors , Animals , Embryo Culture Techniques , Embryonic Development/physiology , Female , Gene Expression/drug effects , Mice , Mitochondria/metabolism , Oxidative Stress/drug effects , Sirtuins/pharmacology , Taurine/analogs & derivatives , Taurine/pharmacology , Thioctic Acid/pharmacology , alpha-Tocopherol/pharmacology
7.
J Assist Reprod Genet ; 31(12): 1703-11, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25261352

ABSTRACT

PURPOSE: To determine the composition of commercially available protein supplements for embryo culture media and test if differences in protein supplement composition are biologically relevant in a murine model. METHODS: Amino acid, organic acid, ion and metal content were determined for 6 protein supplements: recombinant human albumin (AlbIX), human serum albumin (HSA and Buminate), and three complex protein supplements (SSS, SPS, LGPS). To determine if differences in the composition of these supplements are biologically relevant, mouse one-cell embryos were collected and cultured for 120 hours in each protein supplement in Global media at 5 and 20 % oxygen in an EmbryoScope time-lapse incubator. The compositions of six protein supplements were analyzed for concentrations of 39 individual amino acids, organic acids, ions and elements. Blastocyst development and cell cycle timings were calculated at 96-hours of culture and the experiments were repeated in triplicate. Blastocyst gene expression was analyzed. RESULTS: Recombinant albumin had the fewest undefined components , the lowest concentration of elements detected, and resulted in high blastocyst development in both 5 and 20 % oxygen. Buminate, LGPS and SPS had high levels of transition metals whereas SSS had high concentrations of amino acids. Pre-compaction mouse embryo development was delayed relative to embryos in AlbIX for all supplements and blastocyst formation was reduced in Buminate, SPS and SSS. CONCLUSIONS: The composition of protein supplements are variable, consisting of previously undescribed components. High concentrations of pro-oxidant transition metals were most notable. Blastocyst development was protein dependent and showed an interaction with oxygen concentration and pro-oxidant supplements.


Subject(s)
Culture Media/chemistry , Embryo Culture Techniques/methods , Embryonic Development/drug effects , Fertilization in Vitro , Amino Acids/chemistry , Amino Acids/isolation & purification , Animals , Blastocyst/drug effects , Embryo, Mammalian , Humans , Ions/chemistry , Ions/isolation & purification , Metals/chemistry , Metals/isolation & purification , Mice , Reactive Oxygen Species/metabolism , Serum Albumin/chemistry , Serum Albumin/pharmacology
8.
Reproduction ; 131(2): 289-98, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16452722

ABSTRACT

The objectives of this study were to manipulate metabolism of glucose through glycolysis and the pentose phosphate pathway (PPP) in porcine oocytes during in vitro maturation, and determine the effects of this manipulation on meiotic progression, intracellular glutathione (GSX) concentrations and embryonic development. Cumulus-oocyte complexes isolated from abattoir ovaries were matured (40-44 h) in Purdue Porcine Medium for maturation alone (control) or supplemented with pyrroline-5 carboxylate (PC, 0.1 microM; PPP stimulator), diphenyleneiodonium (DPI, 0.1 microM; PPP inhibitor), dinitrophenol (DNP, 10 microM; glycolytic stimulator), hexametaphosphate (HMP, 100 microM; glycolytic inhibitor), PC + HMP or DNP + DPI. At the conclusion of in vitro maturation, cumulus cells were removed and oocytes were randomly allocated for analysis of GSX, metabolism and nuclear maturation, or in vitro fertilization and embryo culture. Both DPI and DNP + DPI decreased (P < or = 0.05) the activity of glycolysis and the PPP, increased (P < or = 0.05) the percentage of immature oocytes, and decreased (P < or = 0.05) the proportion of mature oocytes compared with control oocytes and oocytes from the other treatments. Embryonic development (cleavage and blastocyst stage) and the intracellular content of GSX were also decreased (P < or = 0.05) following exposure to DPI or DNP + DPI compared with control oocytes and oocytes from the other treatments. Oocyte metabolism, nuclear maturation, GSX content and embryonic development were unaffected (P > 0.05) following exposure to PC, DNP, HMP or PC + HMP. Our results suggest that metabolism of glucose through the PPP and/or glycolysis plays a key role in the control of nuclear and cytoplasmic maturation of porcine oocytes in vitro.


Subject(s)
Cell Nucleus/physiology , Cytoplasm/physiology , Glucose/metabolism , Oocytes/metabolism , Oogenesis/physiology , Swine/physiology , Animals , Cells, Cultured , Dinitrophenols/pharmacology , Embryonic Development , Enzyme Inhibitors/pharmacology , Female , Fertilization in Vitro/methods , Glutathione/metabolism , Glycolysis/drug effects , Intracellular Space/metabolism , Meiosis/drug effects , Onium Compounds/pharmacology , Pentose Phosphate Pathway/drug effects , Phosphates/pharmacology , Uncoupling Agents/pharmacology
9.
Theriogenology ; 59(5-6): 1373-80, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12527083

ABSTRACT

Only a small proportion of goat oocytes selected for in vitro oocyte maturation (IVM) can successfully complete cytoplasmic maturation and support embryonic development. To produce goat blastocysts more efficiently in vitro, it is necessary to identify factors required during oocyte maturation. The objective of this study was to determine the role of vitamins during maturation of caprine oocytes in semi-defined medium on subsequent developmental capacity in vitro. Cumulus oocyte complexes (COCs) collected from a local abattoir were matured in synthetic oviductal fluid (SOF) medium supplemented with BSA, LH, FSH, and EGF in the presence or absence of MEM vitamins for 24 h. The COCs were co-incubated with frozen-thawed sperm in Bracket and Oliphant fertilization medium for 18-22 h. Embryos were cultured in G1.2 medium for 72 h followed by culture in G2.2 medium for an additional 72 h. Addition of vitamins significantly increased (P<0.05) overall blastocyst development (16.4+/-1.2% versus 12.3+/-1.1%), and tended to increase (P<0.06) the percentage of cleaved embryos (61.4+/-3.0% versus 52.7+/-2.6%). Addition of MEM vitamins to SOF maturation medium significantly increased (P<0.05) mean blastocyst cell number compared with control medium (107.7+/-6.0 versus 85.1+/-6.3). Hatched blastocysts tended to have increased (P<0.06) cell numbers in the vitamin-treated group (150.5+/-8.4 versus 123.4+/-8.8). These results suggest that addition of vitamins during oocyte maturation is beneficial for subsequent blastocyst development and viability.


Subject(s)
Embryonic and Fetal Development/physiology , Fertilization in Vitro/veterinary , Goats/physiology , Oocytes/growth & development , Vitamins/pharmacology , Animals , Blastocyst/physiology , Female , Fertilization in Vitro/methods , Male , Oocytes/drug effects , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL