Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biotechnol Appl Biochem ; 71(2): 295-313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037220

ABSTRACT

Many synthetic glucokinase activators (GKAs), modulating glucokinase (GK), an important therapeutic target in diabetes have failed to clear clinical trials. In this study, an in silico structural similarity search with differing scaffolds of reference GKAs have been used to identify derivatives from natural product databases. Ten molecules with good binding score and similar interactions to that in the co-crystallized GK as well good activation against recombinant human GK experimentally were identified. Tetrahydropalmatine, an alkaloid present in formulations and drugs from medicinal plants, has not been explored as an antidiabetic agent and no information regarding its mechanism of action or GK activation exists. Tetrahydropalmatine activates GK with EC50 value of 71.7 ± 17.9 µM while lowering the S0.5 (7.1 mM) and increasing Vmax (9.22 µM/min) as compared to control without activator (S0.5 = 10.37 mM; Vmax = 4.8 µM/min). Kinetic data (α and ß values) suggests it to act as mixed, nonessential type activator. Using microscale thermophoresis, Kd values of 3.8 µM suggests a good affinity for GK. In HepG2 cell line, the compound potentiated the uptake of glucose and maintained glucose homeostasis by increasing the expression of GK, glycogen synthase, and insulin receptor genes and lowering the expression of glucokinase regulatory protein (GKRP) and glucagon. Tetrahydropalmatine at low concentrations could elicit a good response by reducing expression of GKRP, increasing expression of GK while also activating it. Thus, it could be used alone or in combination as therapeutic drug as it could effectively modulate GK and alter glucose homeostasis.


Subject(s)
Berberine Alkaloids , Glucokinase , Plants, Medicinal , Humans , Glucokinase/genetics , Glucokinase/metabolism , Glucose , Homeostasis
2.
Enzyme Microb Technol ; 106: 48-54, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28859809

ABSTRACT

Controlling disease outbreaks is a major challenge in aquaculture farms and conventional methods are often ineffective. Nutritional supplementation and probiotic preparations help in reducing severity of such infections. The generally regarded as safe yeast (Yarrowia lipolytica) was used in the current study. A marine strain of Y. lipolytica exhibited tolerance towards sodium selenite and formed cell associated selenium nanoparticles (SeNPs). The synthesized nanoparticles were characterized by UV-vis spectroscopy, X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) observations. Fourier transform infra-red (FTIR) spectroscopy indicated the role of carboxylic and amine groups in the synthesis of nanoparticles. This SeNP-enriched biomass was used as feed for the model aquaculture system, Artemia salina and compared with normal feed, baker's yeast (Saccharomyces cerevisiae). A. salina fed with SeNP-enriched biomass, showed increased survival rates (96.66%) as compared to those fed with S. cerevisiae (60.0%). The size of the larvae fed with SeNP-enriched biomass of Y. lipolytica was also found to be larger. Additionally, larval groups fed with SeNP-enriched biomass were better protected (70.0% survival) against V. harveyi infection when compared with groups fed with S. cerevisiae (24.44%). This combination of selenium in the nanoparticle form associated with the biomass of Y. lipolytica has potential application in improving health of aquaculture species in farms.


Subject(s)
Artemia/growth & development , Artemia/metabolism , Metal Nanoparticles , Selenium/pharmacokinetics , Yarrowia/metabolism , Animal Feed/analysis , Animals , Aquaculture/methods , Biomass , Dietary Supplements/analysis , Larva/growth & development , Larva/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Vibrio Infections/prevention & control
3.
J Microbiol Biotechnol ; 25(4): 459-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25341469

ABSTRACT

This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.


Subject(s)
Biofuels , Biotransformation , Fungi/metabolism , Plant Oils/metabolism , Aspergillus/metabolism , Coconut Oil , Fatty Acids/metabolism
4.
Appl Microbiol Biotechnol ; 92(5): 951-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21687965

ABSTRACT

Amplification of the tyrosinase gene (melO) from the genomic DNA of Aspergillus oryzae NCIM 1212 yielded a 1.6-kb product. This gene was cloned into pYLEX1, and the resulting pTyro-YLEX1 vector was transformed in Yarrowia lipolytica strain Po 1 g. A clone displaying the highest specific activity for tyrosinase (10.94 U/mg) was used for obtaining the complementary DNA (cDNA) and for protein expression studies. cDNA sequence analysis indicated the splicing of an intron present in the melO gene by Po 1 g. Native polyacrylamide gel electrophoresis, acidification at pH 3.0 followed by activity staining with L-DOPA indicated the expression of an active tyrosinase. The clone over-expressing the tyrosinase transformed L-tyrosine to L-DOPA. On optimization of conditions for the biotransformation (pH 4.0, temperature 60° C and with 3.5 mg of biomass), 0.4 mg/ml of L-DOPA was obtained.


Subject(s)
Aspergillus oryzae/enzymology , Cloning, Molecular , Fungal Proteins/genetics , Gene Expression , Levodopa/metabolism , Monophenol Monooxygenase/genetics , Yarrowia/metabolism , Aspergillus oryzae/genetics , Base Sequence , Biotransformation , Fungal Proteins/metabolism , Molecular Sequence Data , Monophenol Monooxygenase/metabolism , Tyrosine/metabolism , Yarrowia/genetics
5.
Article in English | MEDLINE | ID: mdl-18955350

ABSTRACT

Diabetes is known as a multifactorial disease. The treatment of diabetes (Type II) is complicated due to the inherent patho-physiological factors related to this disease. One of the complications of diabetes is post-prandial hyperglycemia (PPHG). Glucosidase inhibitors, particularly α-amylase inhibitors are a class of compounds that helps in managing PPHG. Six ethno-botanically known plants having antidiabetic property namely, Azadirachta indica Adr. Juss.; Murraya koenigii (L.) Sprengel; Ocimum tenuflorum (L.) (syn: Sanctum); Syzygium cumini (L.) Skeels (syn: Eugenia jambolana); Linum usitatissimum (L.) and Bougainvillea spectabilis were tested for their ability to inhibit glucosidase activity. The chloroform, methanol and aqueous extracts were prepared sequentially from either leaves or seeds of these plants. It was observed that the chloroform extract of O. tenuflorum; B. spectabilis; M. koenigii and S. cumini have significant α-amylase inhibitory property. Plants extracts were further tested against murine pancreatic, liver and small intestinal crude enzyme preparations for glucosidase inhibitory activity. The three extracts of O. tenuflorum and chloroform extract of M. koenigi showed good inhibition of murine pancreatic and intestinal glucosidases as compared with acarbose, a known glucosidase inhibitor.

6.
Colloids Surf B Biointerfaces ; 80(1): 45-50, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20620890

ABSTRACT

Gold nanoparticles were synthesized by using banana peel extract (BPE) as a simple, non-toxic, eco-friendly 'green material'. The boiled, crushed, acetone precipitated, air-dried peel powder was used to reduce chloroauric acid. A variety of nanoparticles were formed when the reaction conditions were altered with respect to pH, BPE content, chloroauric acid concentration and temperature of incubation. The reaction mixtures displayed vivid colors and UV-vis spectra characteristic of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size of the nanoparticles under standard synthetic conditions was around 300nm. Scanning electron microscopy and energy dispersive spectrometry (EDS) confirmed these results. A coffee ring phenomenon, led to the aggregation of the nanoparticles into microcubes and microwire networks towards the periphery of the air-dried samples. X-ray diffraction studies of the samples revealed spectra that were characteristic for gold. Fourier transform infra red (FTIR) spectroscopy indicated the involvement of carboxyl, amine and hydroxyl groups in the synthetic process. The BPE mediated nanoparticles displayed efficient antimicrobial activity towards most of the tested fungal and bacterial cultures.


Subject(s)
Metal Nanoparticles/chemistry , Musa/chemistry , Plant Extracts/chemistry , Reducing Agents/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Chlorides/chemistry , Enterobacter aerogenes/drug effects , Enterobacter aerogenes/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Gold/chemistry , Gold Compounds/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Oxidation-Reduction , Particle Size , Powders , Spectrometry, X-Ray Emission , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL