Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Foods ; 12(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37107419

ABSTRACT

Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.

2.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807321

ABSTRACT

Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (-6 and -5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.


Subject(s)
Breast Neoplasms , Foeniculum , Breast Neoplasms/drug therapy , Female , Humans , Ligands , Limonene , Molecular Docking Simulation
3.
PLoS One ; 17(3): e0265420, 2022.
Article in English | MEDLINE | ID: mdl-35298541

ABSTRACT

Human papillomavirus (HPV) induced cervical cancer is becoming a major cause of mortality in women. The present research aimed to identify the natural inhibitors of HPV-18 E1 protein (1R9W) from Himalayan herbs with lesser toxicity and higher potency. In this study, one hundred nineteen phytoconstituents of twenty important traditional medicinal plants of Northwest Himalayas were selected for molecular docking with the target protein 1R9W of HPV-18 E1 Molecular docking was performed by AutoDock vina software. ADME/T screening of the bioactive phytoconstituents was done by SwissADME, admetSAR, and Protox II. A couple of best protein-ligand complexes were selected for 100 ns MD simulation. Molecular docking results revealed that among all the selected phytoconstituents only thirty-five phytoconstituents showed the binding affinity similar or more than the standard anti-cancer drugs viz. imiquimod (-6.1 kJ/mol) and podofilox (-6.9 kJ/mol). Among all the selected thirty-five phytoconstituents, eriodictyol-7-glucuronide, stigmasterol, clicoemodin and thalirugidine showed the best interactions with a docking score of -9.1, -8.7, -8.4, and -8.4 kJ/mol. Based on the ADME screening, only two phytoconstituents namely stigmasterol and clicoemodin selected as the best inhibitor of HPV protein. MD simulation study also revealed that stigmasterol and clicoemodin were stable inside the binding pocket of 1R9W, Stigmasterol and clicoemodin can be used as a potential investigational drug to cure HPV infections.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Human papillomavirus 18 , Humans , Molecular Docking Simulation , Papillomaviridae , Stigmasterol , Uterine Cervical Neoplasms/drug therapy
4.
Appl Biochem Biotechnol ; 172(2): 973-83, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24122711

ABSTRACT

Probiotic lactic acid bacteria are being proposed to cure peptic ulcers by reducing colonization of Helicobacter pylori within the stomach mucosa and by eradicating already established infection. In lieu of that, in vitro inhibitory activity of pediocin-producing probiotic Pediococcus acidilactici BA28 was evaluated against H. pylori by growth inhibition assays. Further, chronic gastritis was first induced in two groups of C57BL/6 mice by orogastric inoculation with H. pylori with polyethylene catheter, and probiotic P. acidilactici BA28 was orally administered to study the eradication and cure of peptic ulcer disease. H. pylori and P. acidilactici BA28 were detected in gastric biopsy and fecal samples of mice, respectively. A probiotic treatment with P. acidilactici BA28, which is able to eliminate H. pylori infection and could reverse peptic ulcer disease, is being suggested as a co-adjustment with conventional antibiotic treatment. The study provided an evidence of controlling peptic ulcer disease, by diet mod


Subject(s)
Helicobacter pylori/physiology , Pediococcus/chemistry , Peptic Ulcer/drug therapy , Peptic Ulcer/microbiology , Probiotics/administration & dosage , Probiotics/therapeutic use , Administration, Oral , Animals , Bacteriocins/pharmacology , Colony Count, Microbial , Disease Models, Animal , Feces/microbiology , Female , Helicobacter pylori/growth & development , Humans , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Peptic Ulcer/pathology , Probiotics/pharmacology , Stomach/drug effects , Stomach/microbiology , Stomach/pathology
SELECTION OF CITATIONS
SEARCH DETAIL