Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652115

ABSTRACT

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Subject(s)
Molecular Dynamics Simulation , Plant Extracts , Uterine Cervical Neoplasms , Vascular Endothelial Growth Factor A , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Humans , Vascular Endothelial Growth Factor A/metabolism , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Precision Medicine/methods , Apoptosis/drug effects , Cell Line, Tumor , Protein Binding , Molecular Docking Simulation
3.
Plant Physiol Biochem ; 201: 107837, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331074

ABSTRACT

Application of nanomaterials in agriculture has been extensively explored over the past decade leading to a wide ambit of nanoparticle-based agrochemicals. Metallic nanoparticles consisting of plant macro- and micro-nutrients have been used as nutritional supplements for plants through soil amendments, foliar sprays, or seed treatment. However, most of these studies emphasize monometallic nanoparticles which limit the range of usage and effectivity of such nanoparticles (NPs). Hence, we have employed a bimetallic nanoparticle (BNP) consisting of two different micro-nutrients (Cu & Fe) in rice plants to test its efficacy in terms of growth and photosynthesis. Several experiments were designed to assess growth (root-shoot length, relative water content) and photosynthetic parameters (pigment content, relative expression of rbcS, rbcL & ChlGetc.). To determine whether the treatment induced any oxidative stress or structural anomalies within the plant cells, histochemical staining, anti-oxidant enzyme activities, FTIR, and SEM micrographs were undertaken. Results indicated that foliar application of 5 mg L-1 BNP increased vigor and photosynthetic efficiency whereas 10 mg L-1 concentration induced oxidative stress to some extent. Furthermore, the BNP treatment did not perturb the structural integrity of the exposed plant parts and also did not induce any cytotoxicity. Application of BNPs in agriculture has not been explored extensively to date and this study is one of the first reports that not only documents the effectivity of Cu-Fe BNP but also critically explores the safety of its usage on rice plants making it a useful lead to design new BNPs and explore their efficacy.


Subject(s)
Metal Nanoparticles , Nanoparticles , Oryza , Seedlings , Fertilizers , Oryza/metabolism , Nanoparticles/chemistry , Photosynthesis , Metal Nanoparticles/chemistry
4.
3 Biotech ; 13(1): 8, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36532858

ABSTRACT

Java Ginger or Curcuma zanthorrhiza Roxb. has long gained focus among tribal people of Java, for its medicinal properties mainly against gynaecological challenges. The present study aims to identify the most potent phytocompound present in the extract and determine primary mode of action accountable for cytotoxic activity of Curcuma zanthorrhiza rhizome extract against HPV16-positive SiHa cervical cancer cells. The phytochemically-rich extract of rhizome (CZM) was capable to inhibit proliferation of target cells in a dose-dependent manner with an IC50 of 150 µg/ml. Dysregulation of intercellular antioxidant defence system resulted to surges in ROS and RNS level, increased calcium concentration and compromised mitochondrial membrane potential. Nucleus got affected, cell cycle dynamics got impaired while clonogenicity and migration ability diminished. Expression of viral oncogenes E7 and E6 decreased significantly. Accumulation of toxic cell metabolite and decrease in level of essential ones continued. Finally, alteration in PI3K/AKT/mTOR signalling route was followed by onset of autophagic cell death concomitant with the upregulated expression of Beclin1, Atg5-12 and LC3II. Curcumin and a novel crystal as well as few phyto-fractions were isolated by column chromatography. Of these, curcumin was found to be most potent in inducing cytotoxicity in SiHa while two other fractions also showed significant activity. Thus, CZM acted against SiHa cells by inducing autophagy that commences in compliance to the changes in PI3K/AKT/mTOR pathway mainly in response to oxidative stress. To the best of our knowledge this is the first report of Curcuma zanthorrhiza Roxb. inducing autophagy. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03415-9.

5.
Chemosphere ; 313: 137538, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36521741

ABSTRACT

Under Cadmium (Cd) stress, rice grain quality and quantity are compromised, affecting human health. Application of Selenium (Se) mitigating Cd stress in rice was already reported, but its role in rescuing Cd induced damage in the reproductive parts in rice plants has not been studied before. To investigate the underlying mechanism, Se mediated alleviation of Cd-stress induced damage to pollen viability, germination rate, and grain chalkiness were studied. A grain Cd accumulating rice genotype was selected and treated with 10 µM Cd and sprayed with 5 µM Se during tillering, elongating and heading stages. A significant reduction in pollen viability, germination percentage, and accumulation of higher amount of ROS in the reproductive parts were observed in Cd treated plants. However, Se supplementation (i.e. Cd + Se), decreased the ROS accumulation in anther, pistil, pollen and enhanced the pollen viability and germination percentage. Cd translocation was prevented from flag leaf to grains, under Se treatment. As a result, a significantly higher seed setting rate, and yield were observed. Additionally, Se improved grain nutrient content and grain quality. Therefore, the recent study suggests that the use of foliar spray of Se could be a cost-effective strategy to prevent Cd-induced yield loss and quality in rice.


Subject(s)
Oryza , Selenium , Soil Pollutants , Humans , Selenium/pharmacology , Cadmium/analysis , Oryza/genetics , Reactive Oxygen Species/pharmacology , Edible Grain/chemistry , Pollen/chemistry , Soil Pollutants/analysis , Soil
6.
Nat Prod Res ; 37(6): 1036-1041, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35856476

ABSTRACT

The biodiversity-rich forests of the Jhargram subdivision of West Bengal, India houses many lesser-known prospective plants. Four ethnomedicinal plants from this locality-Cleistanthus collinus, Tiliacora racemosa, Eupatorium odoratum, and Sida acuta reported for traditional medical uses by local forest tribes have been analyzed for phytochemical constituents and bioactivity potential, viz., antioxidant, antibacterial and antitumor activity. Cleistanthus and Tiliacora plants were rich in alkaloids while Eupatorium and Sida showed tannin abundance. Tiliacora showed maximum alkaloid content, that is, 711 mg strychnine equivalent/gm dry weight. Consequently, these plant extracts showed decent antioxidant activity which is reflected in their antibacterial and antitumor potencies. Cleistanthus showed strong bactericidal activity against Gram-negative bacteria, particularly against Klebsiella pneumoniae and Pseudomonas aeruginosa, while Tiliacora showed robust antitumor activity against cervical cancer cells SiHa at a 50% inhibitory concentration (IC50) of 86 µg/ml. Hence, the biodiversity-rich Jhargram forest should be conserved to protect the potential repertoire for ethnomedicinal plants.


Subject(s)
Alkaloids , Menispermaceae , Plants, Medicinal , Uterine Cervical Neoplasms , Female , Humans , Medicine, Traditional , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Phytochemicals/pharmacology , India
7.
J Integr Med ; 20(5): 463-472, 2022 09.
Article in English | MEDLINE | ID: mdl-35752587

ABSTRACT

OBJECTIVE: "Multi-targeting" drugs can prove fruitful to combat drug-resistance of multifactorial disease-cervical cancer. This study envisioned to reveal if Thuja homeopathic mother tincture (MT) and its bioactive component could combat human papillomavirus (HPV)-16-infected SiHa cervical cancer cells since it is globally acclaimed for HPV-mediated warts. METHODS: Thuja MT was studied for its antiproliferative and antimigratory properties in SiHa cells followed by microscopic determination of reactive oxygen species (ROS) generation by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining and loss in mitochondrial membrane potential (MtMP) by rhodamine 123 (Rh123) staining. Apoptosis and autophagy inductions were studied by acridine orange/ethidium bromide (AO/EB) staining and immunoblot analyses of marker proteins. The bioactive component of Thuja MT detected by gas chromatography-mass spectrometry was studied for antiproliferative and antimigratory properties along with in silico prediction of its cellular targets by molecular docking and oral drug forming competency. RESULTS: Thuja MT showed significant antiproliferative and antimigratory potential in SiHa cells at a 50% inhibitory concentration (IC50) of 17.3 µL/mL. An increase in DCFDA fluorescence and loss in Rh123 fluorescence prove that Thuja MT acted through the burst of ROS and loss in MtMP respectively. AO/EB-stained cells under the microscope and immunoblot analyses supported Thuja-induced cellular demise via dual pathways-apoptosis and autophagy. Immunoblots showed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) along with upregulation of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)-II, and p62 proteins. Hence, the apoptotic cascade followed a caspase-3-dependent pathway supported by PARP-1 cleavage, while autophagic death was Beclin-1-dependent and mediated by accumulation of LC3BII and p62 proteins. Thujone, detected as the bioactive principle of Thuja MT, showed greater anti-proliferative and anti-migratory potential at an IC50 of 77 µg/mL, along with excellent oral drug competency with the ability for gastrointestinal absorption and blood-brain-barrier permeation with nil toxicity. Molecular docking depicted thujone with the strongest affinity for mammalian target of rapamycin, phosphoinositide 3-kinase, and protein kinase B followed by B-cell lymphoma 2, murine double minute 2 and adenosine monophosphate-activated protein kinase, which might act as upstream triggers of apoptotic-autophagic crosstalk. CONCLUSION: Robust "multi-targeting" anticancer potential of Thuja drug and thujone for HPV-infected cervical cancer ascertained its therapeutic efficacy for HPV infections.


Subject(s)
Papillomavirus Infections , Thuja , Uterine Cervical Neoplasms , Animals , Apoptosis , Autophagy , Beclin-1/pharmacology , Bicyclic Monoterpenes , Caspase 3 , Cell Line, Tumor , Female , Humans , Mammals/metabolism , Mice , Molecular Docking Simulation , Papillomavirus Infections/drug therapy , Phosphatidylinositol 3-Kinases , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Reactive Oxygen Species/metabolism , Thuja/chemistry , Thuja/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
8.
Appl Biochem Biotechnol ; 194(10): 4867-4891, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35670907

ABSTRACT

Occurrence of cervical cancer, caused due to persistent human papilloma virus (HPV) infection, is common in women of developing countries. As the conventional treatments are expensive and associated with severe side effects, there is a need to find safer alternatives, which is affordable and less toxic to the healthy human cells. Present study aimed to evaluate the anti-HPV and apoptotic potential of four compounds from the greater cardamom (Amomum subulatum Roxb. var. Golsey), namely rhein, phytosphingosine, n-hexadecenoic acid and coronarin E. Their anti-HPV and apoptotic potential were studied against viral E6, E7 and few anti-apoptotic proteins of host cell (BCL2, XIAP, LIVIN) by in silico docking technique. Phytochemicals from the plant extract were analysed and identified by LC/MS and GC/MS. Involvement of the target proteins in various biological pathways was determined through KEGG. Structural optimization of the three-dimensional structures of the ligands (four phytochemicals and control drug) was done by Avogadro1.1. Receptor protein models were built using ProMod3 and other advanced tools. Pharmacophore modelling of the selected phytochemicals was performed in ZINCPharmer. Swiss ADME studies were undertaken to determine drug likeness. The ligands and proteins were digitally docked in DockThor docking program. Protein flexibility-molecular dynamic simulation helped to study protein-ligand stability in real time. Finally, the correlation of evaluated molecules was studied by the use of principal component analysis (PCA) based on the docking scores. All the ligands were found to possess apoptotic and anti-cancer activities and did not violate Lipinsky criteria. n-Hexadecanoic acid and its analogues showed maximum efficacy against the target proteins. All the protein-ligand interactions were found to be stable. The uncommon phytochemicals identified from rhizomes of greater cardamom have anti-cancer, apoptotic and HPV inhibitory potentials as analysed by docking and other in silico studies, which can be utilized in drug development after proper experimental validation.


Subject(s)
Amomum , Elettaria , Apoptosis Regulatory Proteins , Female , Humans , Ligands , Molecular Docking Simulation , Palmitic Acid , Phytochemicals/analysis , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2 , Rhizome/chemistry
9.
Environ Pollut ; 292(Pt A): 118301, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34626716

ABSTRACT

Almost 81% of nitrogen fertilizers are applied in form of urea but most of it is lost due to volatilization and leaching leading to environmental pollution. In this regard, slow-release nano fertilizers can be an effective solution. Here, we have synthesized different Fe3O4-urea nanocomposites with Fe3O4 NPs: urea ratio (1:1, 1:2, 1:3) ie. NC-1, 2, and 3 respectively, and checked their efficacy for growth and yield enhancement. Oryza sativa L. cv. Swarna seedlings were treated with different NCs for 14 days in hydroponic conditions and significant up-regulation of photosynthetic efficiency and nitrogen metabolism were observed due to increased availability of nitrogen and iron. The discriminant functional analysis confirmed that the NC3 treatment yielded the best results so further gene expression studies were performed for NC-3 treated seedlings. Significant changes in expression profiles of ammonia and nitrate transporters indicated that NC-3 treatment enhanced nitrogen utilization efficiency (NUE) due to sustained slow release of urea. From pot experiments, we found significant enhancement of growth, grain nutrient content, and NUE in NC supplemented sets. 1.45 fold increase in crop yield was achieved when 50% N was supplemented in form of NC-3 and the rest in form of ammonium nitrate. NC supplementation can also play a vital role in minimizing the use of bulk N fertilizers because, when 75% of the recommended N dose was supplied in form of NC-3, 1.18 fold yield enhancement was found. Thus our results highlight that, slow-release NC-3 can play a major role in increasing the NUE of rice.


Subject(s)
Nanocomposites , Oryza , Agriculture , Environmental Pollution , Fertilizers/analysis , Nitrogen/analysis , Nutrients , Soil , Urea
10.
J Plant Growth Regul ; 41(2): 710-733, 2022.
Article in English | MEDLINE | ID: mdl-33649694

ABSTRACT

In recent decades, nano-scale zero valent iron is reported to have plant growth enhancement capacity under laboratory conditions, but till date, there is no report to highlight its effect on the growth and yield of field-grown plants. In this study, we have evaluated the potential of nZVI priming on rice yield. A two-year field study has been conducted with different concentrations (10, 20, 40, and 80 mg l-1) of nZVI for seed priming. The efficacy of nanopriming was compared with the hydroprimed control set. Seeds were treated for 72 h and sown in nursery beds and after 30 days seedlings were transplanted in the field. Root anatomy and morphology were studied in 7 days old seedlings where no changes were found. RAPD analysis also confirmed that low doses of nZVI were not genotoxic. Nanoprimed plants also had broader leaves, higher growth, biomass, and tiller number than control plants. Maximum yield was obtained from the 20 mg l-1 nZVI primed set (3.8 fold higher than untreated control) which is achieved primarily because of the increase in fertile tiller numbers (two fold higher than untreated control). Higher values of other agronomic parameters like growth rate, net assimilation rate proved that nZVI priming enhanced photosynthetic efficiency and helped in the proper storage of photo-assimilates. All these attributed to increased accumulation of phytochemicals like starch, soluble sugar, protein, lipid, phenol, riboflavin, thiamine, and ascorbic acid in the grains. The elemental analysis confirmed that nZVI priming also promoted higher accumulations of macro and micronutrients in grains. Thus, nanoprimed seeds showed better crop performance compared to the traditional hydropimed seeds. Hence, nZVI can be considered as 'pro-fertilizer' and can be used commercially as a seed treatment agent which is capable of boosting plant growth and yield along with minimum interference to the soil ecosystem. Supplementary Information: The online version contains supplementary material available at 10.1007/s00344-021-10335-0.

11.
J Ethnopharmacol ; 269: 113686, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33309918

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Menispermaceae plant Tiliacora racemosa is immensely popular in Indian traditional Ayurvedic medicine as "Krishnavetra" for its remarkable anti-cancerous property, and is commonly used by tribal population for the treatment of skin infections, snake bites and filariasis. AIM OF THE STUDY: This present study intends to identify the modus operandi behind the cytotoxic activity of Tiliacora racemosa leaves in cervical cancer cells SiHa. Focus has been instilled in the ability of the plant extract to target multiple signaling pathways leading to cell cycle arrest and cell death in SiHa cells, followed by a pharmacological characterization to identify the bioactive principle. MATERIALS AND METHODS: T. racemosa leaves extracted in methanol, ethyl acetate, hexane and aqueous solvent were screened for cytotoxicity in HeLa, SiHa, C33A (cervical cancer cells) and HEK cells by MTT assay. SiHa cells were treated with the most potent extract (TRM). Cellular morphology, clonogenic and wound healing potential, presence of intracellular ROS and NO, lipid peroxidation, activity of cellular antioxidants (SOD, CAT, GSH), DNA damage detection by comet assay and localisation of γ-H2AX foci, intracellular expression of PARP-1, Bax/Bcl2 and caspase-3, loss in mitochondrial membrane potential by JC1 (flow cytometry) and Rh123 (microscopy), cell cycle analysis, Annexin-FITC assay, AO/EtBr microscopy and apoptotic proteome profiling were undertaken in the treated cells. All the related proteins were studied by immunoblots. Effect of NAC (ROS-scavenger) on cell viability, DNA damage and apoptosis were studied. Phytochemical characterization of all TR extracts was followed by LC-MS analysis of TRM and isolated alkaloid of TR was assessed for cytotoxicity. RESULTS: The methanol extract of T. racemosa (TRM) rich in bisbenzylisoquinoline and other alkaloids impeded the proliferation of cervical cancer cells SiHa in vitro through disruption of cellular redox homeostasis caused by increase in cellular ROS and NO with concomitant decrease in the cellular antioxidants. Double-stranded DNA damage was noted from γH2AX foci accumulation and Parp-1 activation leading to ATM-Chk2-p53 pathway arresting the cells at G2/M-phase through cyclin B1 inhibition. The mitochondrial membrane potential was also disturbed leading to caspase-3 dependent apoptotic induction by both extrinsic and intrinsic pathway. Immunoblots show TRM also inhibited PI3K/Akt and NFκB pathway. NAC pre-treatment rescued the cell viability proving DNA damage and apoptosis to be direct consequences of ROS overproduction. Lastly, the therapeutic potential of T. racemosa is was hypothesized to be possibly derived from its alkaloid content. CONCLUSION: This study proves the age old ethnnopharmacological anticancer role of T. racemosa. The leaf extracts inhibited the anomalous proliferation of SiHa cells by virtue of G2/M-phase cell cycle arrest and apoptotic cell death. Oxidative stress mediated double stranded DNA damage paved the way towards apoptotic cell death through multiple routes, including PI3K/Akt/NFκB pathway. The abundant alkaloid content of T. racemosa was denoted as the probable responsible cytotoxic principle.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Cell Division/drug effects , DNA Damage/drug effects , G2 Phase/drug effects , Menispermaceae , Oxidative Stress/drug effects , Uterine Cervical Neoplasms/metabolism , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Division/physiology , Cell Survival/drug effects , Cell Survival/physiology , DNA Damage/physiology , Dose-Response Relationship, Drug , Female , G2 Phase/physiology , HEK293 Cells , HeLa Cells , Humans , Oxidative Stress/physiology , Plant Leaves , Uterine Cervical Neoplasms/drug therapy
12.
Sci Rep ; 10(1): 21784, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311531

ABSTRACT

Sundarbans Mangrove Ecosystem (SME) is a rich repository of bioactive natural compounds, with immense nutraceutical and therapeutic potential. Till date, the algal population of SME was not explored fully for their anticancer activities. Our aim is to explore the potential of these algal phytochemicals against the proliferation of cervical cancer cells (in vitro) and identify the mode of cell death induced in them. In the present work, the chloroform fraction of marine green alga, Chaetomorpha brachygona was used on SiHa cell line. The algal phytochemicals were identified by GCMS, LCMS and column chromatography and some of the identified compounds, known for significant anticancer activities, have shown strong Bcl-2 binding capacity, as analyzed through molecular docking study. The extract showed cytostatic and cytotoxic activity on SiHa cells. Absence of fragmented DNA, and presence of increased number of acidic vacuoles in the treated cells indicate nonapoptotic cell death. The mode of cell death was likely to be autophagic, as indicated by the enhanced expression of Beclin 1 and LC3BII (considered as autophagic markers) observed by Western blotting. The study indicates that, C. brachygona can successfully inhibit the proliferation of cervical cancer cells in vitro.


Subject(s)
Aquatic Organisms/chemistry , Autophagy/drug effects , Chloroform/chemistry , Chlorophyta/chemistry , Plant Extracts/pharmacology , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Plant Extracts/chemistry , Uterine Cervical Neoplasms/pathology
13.
Sci Rep ; 9(1): 14950, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628385

ABSTRACT

Phyllanthus amarus is widely grown in this sub-continent and used traditionally to treat many common ailments. In the present study, lignan rich fraction of P. amarus extract was used on cervical cancer cell lines (HeLa, SiHa and C33A) to study it's mechanism of cell death induction. As the cells were treated with IC50 doses of LRF, characteristic apoptotic features were observed. Increased sub G0 population were observed both in Hela and C33 cells, while G1/S arrest was observed in SiHa cells than their untreated counterparts. Increased production of ROS and change in MMP were also detected in the treated cells. Presence of γH2AX, was observed by immunofluorescence. Reduced expression of HPV (16/18) as well as ET-1, an autocrine growth substance, were observed in the treated cells. Immunoblotting as well as ICFC studies showed enhanced expressions of BAX, Caspase 3 and PARP (cleaved) in the treated cells. A major lignan, phyllanthin was isolated from the chloroform fraction and showed strong irreversible affinities for viral E6 and MDM2 in in silico analysis. The study conclusively indicates that LRF has the potential to induce apoptotic cell death in cervical cancer cells by activation of p53 and p21 against DNA damage.


Subject(s)
Apoptosis , Lignans/chemistry , Malpighiales/chemistry , Plant Extracts/pharmacology , Cell Line, Tumor , DNA Damage , HeLa Cells , Human papillomavirus 16 , Human papillomavirus 18 , Humans , Hydrogen Bonding , Membrane Potential, Mitochondrial , Microscopy, Fluorescence , Mitochondria/metabolism , Phytochemicals/pharmacology , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , X-Ray Diffraction
14.
Front Microbiol ; 10: 3116, 2019.
Article in English | MEDLINE | ID: mdl-32038557

ABSTRACT

Human papillomavirus (HPV)-induced cervical cancer is a major health issue among women from the poorly/under-developed sectors of the world. It accounts for a high-mortality rate because of its late diagnosis and poor prognosis. Initial establishment and subsequent progression of this form of cancer are completely dependent on two major oncogenes E6 and E7, which are expressed constitutively leading to tumorigenesis. Thus, manipulation of these genes represents the most successful form of cervical cancer therapy. In the present article, information on structural, functional, and clinical dimensions of E6 and E7 activity has been reviewed. The genome organization and protein structure of E6 and E7 have been discussed followed by their mechanism to establish the six major cancer hallmarks in cervical tissues for tumor propagation. The later section of this review article deals with the different modes of therapeutics, which functions by deregulating E6 and E7 activity. Since E6 and E7 are the biomarkers of a cervical cancer cell and are the ones driving the cancer progression, therapeutic approaches targeting E6 and E7 have been proved to be highly efficient in terms of focused removal of abnormally propagating malignant cells. Therapeutics including different forms of vaccines to advanced genome editing techniques, which suppress E6 and E7 activity, have been found to successfully bring down the population of cervical cancer cells infected with HPV. T-cell mediated immunotherapy is another upcoming successful form of treatment to eradicate HPV-infected tumorigenic cells. Additionally, therapeutics using natural compounds from plants or other natural repositories, i.e., phytotherapeutic approaches have also been reviewed here, which prove their anticancer potential through E6 and E7 inhibitory effects. Thus, E6 and E7 repression through any of these methods is a significant approach toward cervical cancer therapy, described in details in this review along with an insight into the signaling pathways and molecular mechanistic of E6 and E7 action.

SELECTION OF CITATIONS
SEARCH DETAIL